◎正当な理由による書き込みの削除について:1レス¥5000円 1スレ¥20000円の技術作業料が発生します。一回分だけの料金で当方管理下の全サイトで作業が実施されます。支払い方法はAmazonギフト券番号。連絡先は当サイトの登録emailへ。

【統計分析】機械学習・データマイニング20 YouTube動画>2本 ->画像>16枚


動画、画像抽出 || この掲示板へ 類似スレ 掲示板一覧 人気スレ 動画人気順

このスレへの固定リンク: http://2chb.net/r/tech/1533635797/
ヒント:2chスレのurlに http://xxxx.2chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

1デフォルトの名無しさん (アウアウエー Sa5f-Mv1r)2018/08/07(火) 18:56:37.59ID:sGPH9ejna
機械学習とデータマイニングについて何でもいいので語れ若人

※ワッチョイだよん

次スレ立ての際は、一行目冒頭に
!extend:on:vvvvv:1000:512つけてね

■関連サイト
機械学習の「朱鷺の杜Wiki」
http://ibisforest.org/
DeepLearning研究 2016年のまとめ
http://qiita.com/eve_yk/items/f4b274da7042cba1ba76

■前スレ
【統計分析】機械学習・データマイニング19
http://mevius.2ch.net/test/read.cgi/tech/1520586585/
VIPQ2_EXTDAT: default:vvvvv:1000:512:----: EXT was configured

2デフォルトの名無しさん (アウアウエー Sadf-Mv1r)2018/08/07(火) 18:57:06.02ID:sGPH9ejna
【統計分析】機械学習・データマイニング11
http://echo.2ch.net/test/read.cgi/tech/1482227795/
【統計分析】機械学習・データマイニング12
http://echo.2ch.net/test/read.cgi/tech/1485008808/
【統計分析】機械学習・データマイニング13
http://echo.2ch.net/test/read.cgi/tech/1487433222/
【統計分析】機械学習・データマイニング14
http://echo.2ch.net/test/read.cgi/tech/1489636623/
【統計分析】機械学習・データマイニング15
http://mevius.2ch.net/test/read.cgi/tech/1492344216/
【統計分析】機械学習・データマイニング16
http://mevius.2ch.net/test/read.cgi/tech/1498493352/
【統計分析】機械学習・データマイニング17
http://mevius.2ch.net/test/read.cgi/tech/1502032926/
【統計分析】機械学習・データマイニング18
http://mevius.2ch.net/test/read.cgi/tech/1507807291/

3デフォルトの名無しさん (アウアウエー Sadf-Mv1r)2018/08/07(火) 18:57:28.97ID:sGPH9ejna
【統計分析】機械学習・データマイニング【集合知】
http://toro.2ch.net/test/read.cgi/tech/1286200810/
[統計分析]機械学習・データマイニング[集合知] 2
http://toro.2ch.net/test/read.cgi/tech/1342812444/
【統計分析】機械学習・データマイニング3
http://peace.2ch.net/test/read.cgi/tech/1350121405/
【統計分析】機械学習・データマイニング4
http://peace.2ch.net/test/read.cgi/tech/1403603502/
【統計分析】機械学習・データマイニング5
http://peace.2ch.net/test/read.cgi/tech/1439302488/
【統計分析】機械学習・データマイニング6
http://echo.2ch.net/test/read.cgi/tech/1455651930/
【統計分析】機械学習・データマイニング7
http://echo.2ch.net/test/read.cgi/tech/1460535528/
【統計分析】機械学習・データマイニング8
http://echo.2ch.net/test/read.cgi/tech/1464586095/
【統計分析】機械学習・データマイニング9
http://echo.2ch.net/test/read.cgi/tech/1470037752/
【統計分析】機械学習・データマイニング10
http://echo.2ch.net/test/read.cgi/tech/1479498503/

4デフォルトの名無しさん (アウアウエー Sadf-Mv1r)2018/08/07(火) 18:59:38.03ID:sGPH9ejna
■関連スレ
パーセプトロン
http://rio2016.2ch.net/test/read.cgi/informatics/1330911251/
人工知能ディープラーニング機械学習のための数学
http://mevius.2ch.net/test/read.cgi/tech/1482808144/
Deep learning
http://mevius.2ch.net/test/read.cgi/tech/1387960741/
ディープラーニング(過去ログ)
http://echo.2ch.net/test/read.cgi/tech/1457792560/
自然言語処理スレッド その4
http://mevius.2ch.net/test/read.cgi/tech/1401741600/

■人工知能考察スレ
(強いAI)技術的特異点/シンギュラリティ(知能増幅) 74
http://rio2016.2ch.net/test/read.cgi/future/1498186101/
(AI)技術的特異点と政治・経済・社会等(BI) 10
http://rio2016.2ch.net/test/read.cgi/future/1498288837/
(情報科学)技術的特異点と科学・技術等 2
http://rio2016.2ch.net/test/read.cgi/future/1489922543/
人工知能
http://rio2016.2ch.net/test/read.cgi/future/1286353655/
人工知能で自我・魂が作れるか
http://rio2016.2ch.net/test/read.cgi/future/1476229483/
こころがあるロボットは作れるのか
http://rio2016.2ch.net/test/read.cgi/robot/1287505889/

5デフォルトの名無しさん (アウウィフ FFa7-10BI)2018/08/07(火) 19:15:16.08ID:pTM8y/NsF
O2

6デフォルトの名無しさん (アウーイモ MMa7-HbjE)2018/08/07(火) 19:50:22.13ID:8zVziv3vM
乙松

7デフォルトの名無しさん (アウアウウー Saa7-m06p)2018/08/08(水) 08:55:49.42ID:HGwT+goka
年収が高いプログラミング言語は「Go」――「Scala」と「Python」が続く
http://www.atmarkit.co.jp/ait/articles/1808/08/news035.html

8デフォルトの名無しさん (ワントンキン MM9f-Y7Vv)2018/08/08(水) 16:43:32.70ID:8wlFoTsYM
Rはもう結構昔からもう終わりじゃね、と言われていたけど、むしろ最近書籍増えてるよね。
機械学習でも統計でも。

Mathematicaは本が激減したなあ。
その手の用途はだいたいPythonに移ったってことか?

9デフォルトの名無しさん (ブーイモ MMa7-EFdU)2018/08/08(水) 16:52:18.69ID:gJ76Lpu7M
intelのideepを試したいけど、これってインテルのCPU内のどのリソースを使っているの? GPU? VLIW命令?
教えてください。

10デフォルトの名無しさん (ワッチョイ a31e-QB3m)2018/08/08(水) 18:46:19.79ID:cDhsKsre0
マセマティカからpythonはないだろ

11デフォルトの名無しさん (アウアウウー Saa7-m06p)2018/08/08(水) 19:08:29.20ID:cfJlr7XQa
sympyで大体mathematicaの代わりとしては十分かと

12デフォルトの名無しさん (アウアウウー Sa2f-BRNY)2018/08/09(木) 08:26:32.93ID:9inRiYG9a
>>11
中学や高校でプログラムの授業やるみたいやけどpythonとsympyを数学の授業で教えといたら使えるようになるやろ。

13デフォルトの名無しさん (ワッチョイ de61-+zB5)2018/08/09(木) 10:11:14.58ID:RpjTpAg/0
学校で教えると全てのものが糞になる。
特に受験英語と受験数学。

14デフォルトの名無しさん (ワイーワ2 FF82-VDz4)2018/08/09(木) 10:40:56.18ID:NXkdt6vrF
うむ

15デフォルトの名無しさん (ワッチョイ 468a-Qb5F)2018/08/09(木) 11:35:24.97ID:QXr9RiYT0
よくある寝言

16デフォルトの名無しさん (アウアウウー Sa2f-nKX0)2018/08/09(木) 12:10:28.90ID:dmGenwPQa
読み書きに関しては日本の学校英語教育で十分だけどね
高校卒業まで真面目にやっていれば哲学書でもない限り読めない文章はそうそうないはず

17デフォルトの名無しさん (ワッチョイ cab0-irNJ)2018/08/09(木) 12:26:40.71ID:/BnwmUrB0
>>13
能力の低い学生ほどそういうこと言うよね

18デフォルトの名無しさん (ワッチョイ de61-IeV5)2018/08/09(木) 15:53:08.15ID:RpjTpAg/0
日本の教育は洗脳教育だからな。

19デフォルトの名無しさん (ワッチョイ de8a-IeV5)2018/08/09(木) 18:52:27.78ID:zr10dTEW0
機械学習なんて学校教育で教えるような分野でもないよ
寝言でもなんでもなく、基礎のある奴が本気で取り組めば一年で最先端に追いつく分野
実務で使おうと思えばやること増えるけど

てか、機械学習って日本ではそんなに需要ないよね

20デフォルトの名無しさん (ブーイモ MM27-o+Id)2018/08/09(木) 18:59:44.84ID:dPMfUDyXM
スポンサーがアホやからな

21デフォルトの名無しさん (ワッチョイ 8a23-Qb5F)2018/08/10(金) 11:53:21.49ID:mlndH2x/0
Pythonに急速に人が集まってるから、これからPHPとJavaを駆逐しそう

22デフォルトの名無しさん (ワッチョイ 0fc6-yN1c)2018/08/10(金) 12:03:34.10ID:tHhIb8vz0
PythonはWebには広まってないから
PHPとJavaには影響ないな

23デフォルトの名無しさん (ワントンキン MM3a-Hn5+)2018/08/10(金) 18:01:05.51ID:Ianm2pCwM
Rubyにnumruby,pandas,matplotlib
があれば歴史は違っていた

24デフォルトの名無しさん (アウアウエー Sac2-VDz4)2018/08/10(金) 18:16:56.60ID:4q34i5cva
そうでもない

25デフォルトの名無しさん (ブーイモ MM76-Rf1C)2018/08/10(金) 19:25:59.91ID:ZeKsZHvVM
ライブラリとコミュニティの違いを除いてrubyがpythonに明確に劣ってる感じはしないけどなあ。
まあバージョン1.8でrubyからpythonに乗り換えたんでそれ以降はあまり知らないんだけど。

26デフォルトの名無しさん (ワッチョイ ea60-Qb5F)2018/08/10(金) 19:32:32.45ID:H9lF8aPc0
>>23
静的ruby に取り組もう、と決心しました

27デフォルトの名無しさん (スップ Sdea-rWw3)2018/08/10(金) 19:35:39.31ID:y/s1EyzFd
>>25
機能の優劣はともかく、海外じゃRoR 以外の用途ではRubyは殆ど使われてないし

28デフォルトの名無しさん (ワッチョイ b3b3-kOv4)2018/08/10(金) 21:10:15.26ID:v63CZr9j0
>>27
鯖缶ツールみたいので
Rubyで書かれてるのなかったっけ?

29デフォルトの名無しさん (ワッチョイ ca9f-LakT)2018/08/10(金) 21:12:35.60ID:uo68Wn/H0
科学系とかラズパイとかもpythonだねえ。利用者の裾野広い

30デフォルトの名無しさん (ワッチョイ ca9f-LakT)2018/08/10(金) 21:13:25.97ID:uo68Wn/H0
>>28
serverspecとchefかな

31デフォルトの名無しさん (ワッチョイ b3b3-kOv4)2018/08/10(金) 21:13:53.92ID:v63CZr9j0
>>30
それそれ

32デフォルトの名無しさん (スップ Sdea-rWw3)2018/08/10(金) 21:35:55.97ID:6opY/YKPd
>>28
別にゼロと主張してるわけじゃないからw

33デフォルトの名無しさん (アウアウエー Sac2-xOeU)2018/08/10(金) 21:59:28.73ID:RU6smc5ya
ruby にしろchainer にしろ、ユーザの多くが日本だけだときついわな。徐々に駆逐されてく

34デフォルトの名無しさん (ワッチョイ 8a23-2km2)2018/08/10(金) 22:37:31.53ID:mlndH2x/0
>>33
やっぱり、人が多い所を学習しとかないとね
駆逐された時に学習した時間が無駄になる

35デフォルトの名無しさん (スップ Sdea-rWw3)2018/08/10(金) 23:41:03.26ID:Q4zISPxNd
>>33 >>34
同意。流行りものに飛び付いてるようで抵抗もあるけど、メインストリームは抑えておかないと後で泣くはめになる

36デフォルトの名無しさん (ワッチョイ db1e-IeV5)2018/08/11(土) 00:08:20.68ID:u+woIPZK0
今まで数件AI使ったソフト納品したが、全部人がやってたものを置き換えただけだ。

37デフォルトの名無しさん (ワッチョイ de61-IeV5)2018/08/11(土) 05:52:02.72ID:dGCQYNDS0
全部使ってみて自分に合ったものを使うのがいい。
人が集まるのは初心者受けしてるだけかもしれないし。

38デフォルトの名無しさん (ワッチョイ cb8a-Qb5F)2018/08/11(土) 07:20:37.99ID:lu9OC7qG0
入門書読んでAI始めたと喜んでいるのが8割

39デフォルトの名無しさん (ワッチョイ 8a23-Qb5F)2018/08/11(土) 08:38:27.14ID:cEMgqD5k0
>>36
具体的にはどんなAI?

40デフォルトの名無しさん (ワントンキン MM3a-Hn5+)2018/08/11(土) 10:37:35.90ID:3iVckqArM
>>25
>ライブラリとコミュニティの違いを除いてrubyがpythonに明確に劣ってる感じはしないけどなあ。

いやそれが決定的に重要だったてことじゃね?
宗教に例えればpythonはキリスト教
rubyはモルモン教
おんなじようなもんじゃんというかもしれんが輸血も剣道も禁止したりと迷惑カルトみたいなもの

41デフォルトの名無しさん (ワッチョイ db1e-IeV5)2018/08/11(土) 13:15:19.23ID:u+woIPZK0
前スレでAIはコストセンターでしかないって書き込みあったが、結局そうなんだろうか

42デフォルトの名無しさん (アウアウウー Sa2f-BRNY)2018/08/11(土) 13:15:36.99ID:ptTYphAna
>>21
バージョン1.0が出たJuliaにも集まれ。

43デフォルトの名無しさん (ワッチョイ cb9b-0FQr)2018/08/11(土) 13:41:33.80ID:KC+spD7B0
機械学習とその他の統計分析の手法の選択って
元データがほとんど定量的な数値だったら機械学習、
データに文字列とか定性的なカテゴリ型を多く含むのだと
したら重回帰分析とかピボットテーブルみたいな切り分けでいいの?

44デフォルトの名無しさん (ペラペラ SD13-xOeU)2018/08/11(土) 13:43:56.66ID:8+xKh9YuD
Juliaは期待してたんだけど、python が深層学習ブームに上手くのっちゃったからなぁ

45デフォルトの名無しさん (ワッチョイ ca9f-LakT)2018/08/11(土) 13:51:10.10ID:ERc3omJJ0
rubyの御本尊の周りは日本語で議論を勝手に進めちゃうって不満なら聞いたことある。

46デフォルトの名無しさん (アウアウエー Sac2-xOeU)2018/08/11(土) 19:30:18.54ID:UfI7tDpya
| SHINJI KAGAWA / 香川真司 @S_Kagawa0317 3分前
| イニエスタ…

香川も見てるんだな

47デフォルトの名無しさん (アウアウエー Sac2-xOeU)2018/08/11(土) 19:30:51.53ID:UfI7tDpya
あ〜、誤爆った すまん無視してくれ

48デフォルトの名無しさん (スップ Sdea-rWw3)2018/08/11(土) 23:10:30.37ID:3fhM1exid
>>44
Juliaにも一応深層学習のライブラリあったけどな。流行ってるかは知らんが

49デフォルトの名無しさん (ワッチョイ 679f-FZsK)2018/08/13(月) 17:17:27.35ID:pQ0BapEF0
機械学習の説明変数にカテゴリー的なデータを
数値化したものがあってもうまく学習できますか?
たとえば
「月」のカラムに「1~12」までの数値のどれかが格納され、
「曜日」のカラムに「0~6」まで
「日」のカラムに「1~31」のどれかを格納して学習させることは
できますか?
アルゴリズムはRBFのSVM
ランダムフォレスト
ニューラルネットなどを使うつもりです。
株価などを予測したくて、
ラベルには「急上昇」「上昇」「横ばい」「下落」「急下落」の
5クラスに分類したいです。

50デフォルトの名無しさん (アウアウエー Sac2-GcQY)2018/08/13(月) 17:35:47.29ID:y8RgDL+Pa
まあやってみいとしか
理想的な嘘のデータでやってみ?

51デフォルトの名無しさん (ワッチョイ db1e-IeV5)2018/08/13(月) 19:23:08.17ID:e4Fxb0+B0
株価は数値だからクラス分類してはいけない

52デフォルトの名無しさん (ワッチョイ 0b9f-5RUY)2018/08/13(月) 19:42:58.00ID:UjgLJbvH0
一律ではなく使う手法によるはず
OneHotEncodingなどの処理が必要になる手法もあれば
この特徴量はカテゴリデータであると指定すれば良い手法もある

53デフォルトの名無しさん (ワッチョイ aa74-N6Sv)2018/08/13(月) 23:22:01.38ID:t5/kzH150
時系列データなのでそのアーキテクチャだと学習できない

54デフォルトの名無しさん (ワントンキン MM3a-Hn5+)2018/08/13(月) 23:24:39.35ID:Yo+rq3iZM
まさにその種の話題が満載の良書を推薦しとく

実戦データマイニング: AIによる株と為替の予測 単行本 – 2018/6/20
https://www.amazon.co.jp/dp/4274222373/

55デフォルトの名無しさん (ワッチョイ de81-B3wE)2018/08/13(月) 23:55:31.30ID:qrNeGZ1i0
ランダムフォレストならいけるかも

56デフォルトの名無しさん (ワッチョイ de81-B3wE)2018/08/13(月) 23:56:55.40ID:qrNeGZ1i0
失敬。時系列に依存してるからランダムフォレストはない。RNNがいいかも。

57デフォルトの名無しさん (ワッチョイ cab0-irNJ)2018/08/14(火) 05:40:58.83ID:ZxHufy7y0
>>54
コメント辛辣すぎワロタ
★☆☆☆☆「再現できない」
★☆☆☆☆「まったく実戦ではない」
★☆☆☆☆「返品しました」
★☆☆☆☆「内容が薄い」

58デフォルトの名無しさん (ワッチョイ 9ed2-Hn5+)2018/08/14(火) 19:43:58.53ID:o5he+gY00
何十年か昔のニューロン研究のブームのときもヒューリスティックに株価のパターンを発見して儲けるみたいな研究が紹介されてた記憶があるけど、その後下火になったような

株価はやはりランダムウォークで、テクニカルな分析なんて無効だと思うけど、完全に否定も出来ないから機械学習だなんだと新手のバズワードが出てくるんじゃないかな性懲りもなく

といいつつ俺もツイッターの株に関する書き込みや日銀短観の文の感情分析との関係で予測出来ないか研究してるよ

でも仮に儲かる仕組みを見つけても誰にも教えないでこっそり自分だけ儲けるけどね

59デフォルトの名無しさん (ワッチョイ 9e8a-Qb5F)2018/08/14(火) 20:12:48.53ID:/o4c3MCw0
よかったね

60デフォルトの名無しさん (ワッチョイ 8661-sh2v)2018/08/14(火) 21:52:45.73ID:WYqpuTVZ0
今の機会学習って人間にできることをやらせてるだけで、
株価予測とか人間にできないものは判別できないんじゃない。

61デフォルトの名無しさん (ワッチョイ db1e-IeV5)2018/08/14(火) 22:41:28.26ID:wMPAoB6l0
人間がやる昔ながらの投資手法はなぜかファンダメンタルとかいう呼び名になっている
値動きだけ見て売り買いするのは昭和の頃は相場師とか言った物だ

62デフォルトの名無しさん (ワッチョイ 9ed2-Hn5+)2018/08/15(水) 00:03:39.66ID:2wi8vkvV0
相場師=テクニカルなんて使い方する人いないだろ
デタラメすぎる

63 ◆QZaw55cn4c (ワッチョイ ea60-Qb5F)2018/08/15(水) 00:07:24.44ID:a3nr9Eye0
>>61
今は世界中で緩和しまくりだから、本当の価値なんてわからない、ファンダメンタルなんてあてにならないと考えます

64デフォルトの名無しさん (ワイモマー MMbb-uI+c)2018/08/15(水) 00:21:10.81ID:jwG8Ua4yM
経済学的に「価値」と「価格」は関係ない。
独立。混同すると嵌る。

65デフォルトの名無しさん (アウアウウー Sa2f-nKX0)2018/08/15(水) 01:05:46.03ID:gfhnSfMpa
多種の銘柄の平均期待値は中心極限定理から正規分布に従うので気にすべきことはいかにその分散を減らすかのみ

66デフォルトの名無しさん (ササクッテロル Sp03-kOv4)2018/08/15(水) 06:46:53.06ID:3ANUg6dEp
>>64
オレオレ語録
価値は自分が決める
価格は他人が決める

67デフォルトの名無しさん (ワッチョイ cb8a-Qb5F)2018/08/15(水) 09:24:37.87ID:DeYmOP6R0
小僧は俺がやりたいことをやる

68デフォルトの名無しさん (ワッチョイ 8a23-Qb5F)2018/08/15(水) 11:17:23.49ID:Rh1wPTDz0
今夜のNHKスペシャルは、ノモンハン事件の発掘映像をAIにより自動カラー化

どうせナレーションは糞だから、映像だけみたい

69デフォルトの名無しさん (ワッチョイ 5f23-VDz4)2018/08/15(水) 12:59:17.34ID:Y4UT7naw0
小野田少尉のやつもひどかった

70デフォルトの名無しさん (ワッチョイ 8a23-2km2)2018/08/15(水) 13:24:02.67ID:Rh1wPTDz0
NHKが作ったAI凄いね。これからどんどん戦前の映像がカラー化されそう

人間のように成長するAl(人工知能)! 80年前の白黒映像がカラーで蘇る!
https://www.nhk.or.jp/ten5/articles/17/003065.html

> この最新技術を活用する初めての番組が、8月に放送されます。
> NHKスペシャル「ノモンハン事件(仮)」ぜひご覧ください。

71デフォルトの名無しさん (ブーイモ MM76-Rf1C)2018/08/15(水) 13:38:38.38ID:SGNbZPzyM
>>60
人間にできることしかできないわけじゃない。分かりやすいとこで将棋AIとかな。

72デフォルトの名無しさん (ワッチョイ 8a23-2km2)2018/08/15(水) 13:47:30.19ID:Rh1wPTDz0
>>71
将棋こそ人間が出来ることの代表じゃん

73デフォルトの名無しさん (ワッチョイ 0fc6-yN1c)2018/08/15(水) 14:23:32.45ID:sp3AjTCJ0
できることのレベルが違う。

自動車や電車を、走ることなら人間でもできるといっても無理。
自動車や電車のようには人間は走れないし、
AIのように人間はゲームに強くない。

74デフォルトの名無しさん (ワッチョイ db1e-IeV5)2018/08/15(水) 15:23:52.00ID:RfMLsX630
元が白黒のものに着色しても資料としての価値はないのにさっそく誤解される言い方してるのが
さすがNHKというか

75デフォルトの名無しさん (ワッチョイ 5f23-VDz4)2018/08/15(水) 15:52:29.71ID:Y4UT7naw0
>>74
価値がないどころか価値が下がる

76デフォルトの名無しさん (ワッチョイ 0fc6-yN1c)2018/08/15(水) 16:02:21.39ID:TqDjOUBh0
TVはエンタメなので歴史なんて自由自在に改変しまくり

77デフォルトの名無しさん (ワッチョイ 1b8a-Qb5F)2018/08/15(水) 16:09:30.39ID:0QvowbH20
歴史は勝者が書いたもの(笑)

78デフォルトの名無しさん (アウアウウー Sa2f-nKX0)2018/08/15(水) 17:06:05.10ID:L1yVVjUFa
写真に関しての資料としての価値とは現実をより正確に表現することであり、それなら当然カラーの方が価値は高いだろう
白黒写真を白黒写真としてできる限り良い状態で保存できていることが価値の高さを示すものでは決してない

79デフォルトの名無しさん (ワッチョイ 9f8a-Qb5F)2018/08/15(水) 17:36:14.40ID:+9Q4OCx50
原画は原画として残してあるだろう。番組としての映像の価値だろ

80デフォルトの名無しさん (アウアウウー Sa2f-nKX0)2018/08/15(水) 17:50:33.01ID:RQ0m8IYPa
現実はカラーである以上、映像としての価値だって白黒よりカラーの方が上だろう

81デフォルトの名無しさん (アウアウエー Sac2-GcQY)2018/08/15(水) 17:53:51.37ID:ZwVzHWMHa
着色だって改変だ
見栄えだったりの価値は上がるとしても
歴史的価値はオリジナルの状態を保たなきゃらなんだろ

82デフォルトの名無しさん (ワッチョイ 0fc6-yN1c)2018/08/15(水) 18:23:59.54ID:TqDjOUBh0
TVはエンタメなので見た目のみだな

83デフォルトの名無しさん (ワッチョイ 679f-FZsK)2018/08/15(水) 18:24:30.41ID:evuO2JQD0
異常検知と株式予測って同じ技術使えるのかね。
株式予測は「異常に変化する点」を予測できればいいんでしょ?
しかし完全に物理要因の機械故障の予測と、
人間の思惑が絡み合う市場経済に違いがあるかってことが重要だな。
RNNやLSTMは一般向けの技術書はまだ少ないね?
ちょっと論文から読む気にはならんわ。
やっぱり画像処理や自然言語なんかより、金そのもののほうがモチベーション全然
違うよな。

84デフォルトの名無しさん (ワッチョイ 5f23-VDz4)2018/08/15(水) 18:41:00.14ID:Y4UT7naw0
金額だけ見るんじゃなくて
事件とかのニュースも見ればいいんじゃね

85デフォルトの名無しさん (ワッチョイ de8a-IeV5)2018/08/15(水) 18:53:35.96ID:hcpx9XaF0
たかがはじパタ本を読んだぐらいで

「もう理論の基本的なところは理解してるから、
 識別機のコードを書くぐらい簡単に出来るだろう♪」

などと息巻いていたが最近になってやっと現実を思い知った
機械学習のプログラミング、マジむずい
写経を繰り返せば身につくのかなあ(遠い目)

86デフォルトの名無しさん (ワッチョイ 679f-FZsK)2018/08/15(水) 19:15:44.40ID:evuO2JQD0
>>84
それだと事件とかニュースをデータ化しないといけないじゃん。
そうすると自然言語処理をしないといけない。
ファンダメンタル情報も体系化されていれば分析もできなくもないが、
基本的に株価情報のみに基づく予測じゃないと、前処理が大変だ。

87デフォルトの名無しさん (スップ Sd8a-rWw3)2018/08/15(水) 22:02:06.26ID:Molgtf9Od
>>85
向いてないだけだよ

88デフォルトの名無しさん (ワッチョイ ffff-edN5)2018/08/15(水) 22:05:19.21ID:TF9doA8B0
株価情報しか使わないんならモデルいじっても五十歩百歩なんかね

89デフォルトの名無しさん (ワッチョイ 679f-FZsK)2018/08/15(水) 22:35:22.52ID:evuO2JQD0
ランダムフォレストって神だな
スケールの正規化もダミー変数化も必要ないのかよ。

90デフォルトの名無しさん (ワッチョイ 8a23-2km2)2018/08/15(水) 22:41:50.89ID:Rh1wPTDz0
>>83
株価の異常検知なんて、わざわざ機械学習しないでも
出来高と値動きで簡単にスクリーニングできるよ

91デフォルトの名無しさん (ワッチョイ ded3-Rf1C)2018/08/15(水) 22:43:24.07ID:4ayKDE5p0
深層学習みたいにRandomForestを多層化したしたやつもあるよ。

92デフォルトの名無しさん (ワンミングク MMbf-GHR2)2018/08/16(木) 08:26:06.49ID:U+tTv42oM
ディープ フォレストだね

93デフォルトの名無しさん (ワッチョイ 0b9f-gLMN)2018/08/16(木) 08:35:39.93ID:I/85hfE80
株価情報だけに基づく予測とか転換点の見極めだと
結局のところ数多くあるテクニカル分析のどれかと
似たり寄ったりの結果にしかならなそうだ

かと言って財務情報を加えればファンダメンタル分析と変わらず
ツイッターやニュースなどの情報を加えればノイズが多すぎる

94デフォルトの名無しさん (アウアウウー Sa4f-ot+S)2018/08/16(木) 08:43:11.46ID:olaq8Ifaa
大口機関投資家は相場を当てに行くんではなく相場を作りに行くんだからな。

95デフォルトの名無しさん (ワッチョイ ef8a-hE18)2018/08/16(木) 10:40:16.90ID:dK6faLvu0
DL is the forest of the labyrinth.

96デフォルトの名無しさん (ワッチョイ db9f-f+/+)2018/08/16(木) 17:39:09.28ID:G6TcbKDp0
>>94
だからなんだよ
相場を作れる奴なんてわずかしかいないんだから
当てるしかないんだよ。
ノイズは乗ることが前提じゃないか?
除去すればいい。
ところで既存のテクニカル分析がもともと精度いいなら
それで十分かもな。
どうしても不安なら機械学習で裏をとればいいかも。

97デフォルトの名無しさん (ワッチョイ cb1e-QxOT)2018/08/17(金) 07:25:52.71ID:iogKgGqm0
AIを使ってないものがAIという名前で売られている

98デフォルトの名無しさん (ワッチョイ 0f8a-hE18)2018/08/17(金) 09:22:38.95ID:GoxDl3r90
それがブームというもの

99デフォルトの名無しさん (ブーイモ MMcf-JZs+)2018/08/17(金) 10:39:33.89ID:DRjuha9zM
>>97
AIの定義も色々あるからな。

100デフォルトの名無しさん (アウアウウー Sa4f-YM2i)2018/08/17(金) 12:20:16.25ID:sO++Wjmca
AI=Artificial Intelligence=人工的に作られ知能を持つように見えるもの、
程度の曖昧な意味しかないので内部の仕組みに関わらず知能を持ってるっぽいものは全てAIと呼んで問題ない
そもそも技術者はこんな定義の曖昧な言葉は使いたがらず、営業など技術の詳細を知らない人間が売り文句に使うだけなのであまり信用してはならない

101デフォルトの名無しさん (ワイーワ2 FF3f-HyiG)2018/08/17(金) 12:45:30.22ID:23Jvz4gXF
人工痴能アイちゃん

102デフォルトの名無しさん (ワッチョイ 9f23-hE18)2018/08/17(金) 15:08:19.34ID:pB0wfHJI0
三菱UFJ国際がAIで運用するAI投信右肩下がりなんだけど、これ誰が責任取るの?

AI日本株式オープン(絶対収益追求型)(愛称:日本AI(あい))
http://www.morningstar.co.jp/FundData/SnapShot.do?fnc=2017020106

103デフォルトの名無しさん (ブーイモ MM7f-Nsu5)2018/08/17(金) 15:30:26.61ID:IXADJa1JM
投信なんだから金出した人だわな。元本保証投信なんて聞いたことない。

104デフォルトの名無しさん (ワッチョイ 0f8a-hE18)2018/08/17(金) 16:07:39.19ID:eb+hmNQa0
自己責任、俺が言おうと思ったのに

105デフォルトの名無しさん (ワッチョイ cb1e-QxOT)2018/08/17(金) 17:24:45.21ID:iogKgGqm0
キズナアイ?

106デフォルトの名無しさん (ワッチョイ 9f23-ipLS)2018/08/17(金) 17:41:14.27ID:pB0wfHJI0
>>102
AI作った人美味しすぎワロタ

107デフォルトの名無しさん (アウアウウー Sa4f-YM2i)2018/08/17(金) 18:19:35.25ID:kTNZgpGBa
普通の機関投資家が投資する場合は損失出しまくればその部門の責任者が何らかの形で罰を受けるだろうけどAI投資なら誰も責任取らなくて済むんだろうな
開発会社が投資結果に責任負うような契約するわけないだろうし

108デフォルトの名無しさん (ワッチョイ 9f9f-Nsu5)2018/08/17(金) 19:22:06.49ID:0xyti3j20
社内的にはAI部門?担当の人がなんか被るんでないかい?

109デフォルトの名無しさん (ワッチョイ 0f8a-QxOT)2018/08/18(土) 19:11:08.68ID:Y3qX5jYN0
スクラッチで識別器を組む参考書ばかりやってきたから
sklearnを使う参考書を読み始めてから楽勝ムードが漂いはじめてる
案外、こんなもんか

てか、スクラッチでなにも見ないで識別器を組める奴なんて一部だけで
みんなライブラリ使って楽してるのか? そんなわけないよな

110デフォルトの名無しさん (アウアウエー Sa3f-HyiG)2018/08/18(土) 19:14:28.41ID:IyhzoKxXa
中身判らずにブラックボックスで楽しんでる人は多い
本人がそれでよければ周りがとやかく言うことじゃない

111デフォルトの名無しさん (アウアウエー Sa3f-im8x)2018/08/18(土) 19:31:01.05ID:BeMZGa07a
スクラッチにこだわる人は仕事で使ってないだけだろ

112デフォルトの名無しさん (スップ Sdbf-O7l2)2018/08/18(土) 19:40:45.28ID:7isjh9bnd
コスト意識がないのはスレに学生さんが多いのだろう。
暇なうちにゼロから作るのは悪いことじゃないけど、スクラッチ自慢する人が cuda対応とかもちゃんとやってるかは怪しいもんだがw

113デフォルトの名無しさん (ワッチョイ 9f23-ipLS)2018/08/18(土) 19:44:13.99ID:swOBckIH0
中で何をやってるのか全く分からないけど、
サンプルコードをいじって、適当にデータを与えて実験するのが主流です

114デフォルトの名無しさん (ワントンキン MMbf-wqpS)2018/08/18(土) 20:12:39.72ID:AkIbE7erM
まあ勉強のためには車輪の再発明も大切である

115デフォルトの名無しさん (ワッチョイ 0b8a-hE18)2018/08/18(土) 20:28:00.46ID:IVAog2Qo0
エンジン、ブレーキ、ハンドルも再発明しろよ

116デフォルトの名無しさん (ワッチョイ 0fe8-couo)2018/08/18(土) 20:34:54.44ID:6ipuJ+BC0
>>114
再発明は必要ない
大切なのは再開発、再実装

117デフォルトの名無しさん (アウアウカー Sa0f-sl5h)2018/08/18(土) 21:03:11.80ID:2IERUvwIa
コストばかり考えて中味のわからないままプログラムが書けない人が組み立てる
バグなどの修復ができずによけいにコストがかかるという

118デフォルトの名無しさん (ワッチョイ 8beb-QxOT)2018/08/18(土) 22:06:31.67ID:c/WdprwC0
わからないままプログラムを書くのならまだいいけど、バカは調子に乗ってブログや本を書いちゃうんだな

119デフォルトの名無しさん (ワッチョイ 7b8a-Bb0t)2018/08/18(土) 22:09:36.92ID:Q0JvwYe10
作った人が動作判らない代物に金を出してくれる程世の中優しくないよ

120デフォルトの名無しさん (ワッチョイ 8beb-QxOT)2018/08/18(土) 22:17:46.51ID:c/WdprwC0
ただ今はまだ、分かっても居ない胡散臭い奴らも仕事を取れてるみたいだぜ
バカに金を払うぐらいならWekaあたりを自分で動かしても同じなのに

121デフォルトの名無しさん (ワッチョイ 9f23-hE18)2018/08/18(土) 23:11:46.58ID:swOBckIH0
>>119
AI日本株式オープン(絶対収益追求型)

122デフォルトの名無しさん (ワッチョイ cb1e-QxOT)2018/08/19(日) 00:23:40.80ID:fJG8ZjLF0
超簡単なことだけのAI融資審査
ライブラリの機能そのままのソフト
そもそも機械学習使ってない自称AI

こんなのが世の中にあふれてる

123デフォルトの名無しさん (アウアウウー Sa4f-YM2i)2018/08/19(日) 00:41:04.65ID:aQs7Jxhqa
>>119
買う側が技術のこと分かってないんだから動作の説明など適当にごまかしても問題ない

124デフォルトの名無しさん (ワッチョイ cb1e-QxOT)2018/08/19(日) 09:46:53.60ID:fJG8ZjLF0
【統計分析】機械学習・データマイニング20 	YouTube動画>2本 ->画像>16枚

125デフォルトの名無しさん (アウアウエー Sa3f-HyiG)2018/08/19(日) 13:02:07.73ID:plhuPGbSa
AIちゃんおさるさん禁止

126デフォルトの名無しさん (ワッチョイ 9f23-ipLS)2018/08/19(日) 17:21:05.66ID:WomFY6++0
>>123
これな

127デフォルトの名無しさん (ワッチョイ 7b23-V2Nx)2018/08/19(日) 21:33:10.08ID:o5bI4Hdl0
非エンジニアはむしろスクラッチで一回やってみて原理を知るべき

128デフォルトの名無しさん (ワッチョイ 0f8a-hE18)2018/08/19(日) 21:36:11.22ID:qw1n/yTc0
エンジニアは一回経営をやってみるべきw

129デフォルトの名無しさん (ワッチョイ 8beb-Mwiu)2018/08/19(日) 23:45:35.87ID:Nj9VAWsX0
まあ、経営(営業?)はハッタリと詐欺みたいなもんだからな
だけどここはデータ解析のスレなんで詐欺師は他に行ってくれないかな

130デフォルトの名無しさん (ワッチョイ 9f8a-hE18)2018/08/20(月) 09:06:07.58ID:XTgu8GDv0
儲けてから言えよ、無駄飯食いw

131デフォルトの名無しさん (ワッチョイ 9f23-ipLS)2018/08/20(月) 09:15:46.90ID:9vgaTzFb0
>>128
知り合いの優秀なエンジニアは、独立してもみんな上手くいかないわ

正確性重視で、話にハッタリが足りない

132デフォルトの名無しさん (ワッチョイ 9f9f-Nsu5)2018/08/20(月) 09:19:57.86ID:uVMqPqxR0
ふんわりした話で相手に多幸感を与える技術

133デフォルトの名無しさん (ワッチョイ cb1e-QxOT)2018/08/20(月) 09:34:25.91ID:Uv8UzzHb0
だから技術者が独立すんなって言ってんだろ

134デフォルトの名無しさん (ワッチョイ 9f8a-hE18)2018/08/20(月) 09:36:59.93ID:e0Fi0xaw0
日本の技術は物まね、改善程度だろ

135デフォルトの名無しさん (JP 0Hcf-RGzT)2018/08/20(月) 11:08:35.48ID:Mb0KvSPWH
パクリのくせに独自技術とか言っちゃう面の皮の厚さが必要(中国みたいな)

136デフォルトの名無しさん (ワッチョイ 9f8a-hE18)2018/08/20(月) 11:23:40.39ID:60A0Awql0
あの国はやったもん勝ちだから

137デフォルトの名無しさん (ワントンキン MMbf-wqpS)2018/08/20(月) 12:49:09.53ID:mchhtl5oM
ウォズニアックは居ても、ジョブズは居ない国か
ジョブズ的なパラノイアだか人を魅了する詐欺師がいないとな

138デフォルトの名無しさん (ワッチョイ 0b8a-hE18)2018/08/20(月) 13:45:29.62ID:FFhVJI7V0
ウォズニアック(笑)、買ってきて分解するかハッキングで秘密情報をゲットするかだろ

139デフォルトの名無しさん (ワッチョイ 0f79-TrtP)2018/08/21(火) 01:36:24.60ID:/yckThHF0
自称データサイエンティストwにはコスト意識欠如したバカが多い
RMSE0.01の世界を仕事に持ち込むかどうかは
解こうとしてる業務課題によるってのを分かろうとしないんだよな
kaggleみたいな趣味を仕事に持ち込むなっての

140デフォルトの名無しさん (ワッチョイ cb1e-QxOT)2018/08/21(火) 02:01:10.52ID:0i7+6f1S0
データサイエンティストは資格団体が儲けるために宣伝してたものだから

141139 (ワッチョイ 0f79-TrtP)2018/08/21(火) 02:55:06.78ID:/yckThHF0
santanderだかhomecreditだか知らんが
お前らはそのクズ脳使って現実世界で
いかに結果を出すかが勝負だろうに・・・
こんなクズらを量産してるコンペサイトも責任あるわな

142デフォルトの名無しさん (アウアウウー Sa4f-YM2i)2018/08/21(火) 07:38:48.25ID:QzaLOIOta
データサイエンティストを活用できないような旧態依然の仕事の仕方しかできない企業だと自白してるようなものだな

143デフォルトの名無しさん (JP 0H49-N245)2018/08/23(木) 10:00:35.80ID:OjwP8SxPH
トヨタも虜にする「天才が憧れる天才」AI企業
https://www.businessinsider.jp/post-173455

144デフォルトの名無しさん (ワッチョイ 2d1e-wF79)2018/08/23(木) 10:20:54.57ID:CIjDH4qv0
こういう宣伝するから舐められるんだよ

145デフォルトの名無しさん (スップ Sdea-Iibt)2018/08/23(木) 17:38:39.42ID:HHKF7Z0Cd
トヨタ傘下の宣伝乙

146デフォルトの名無しさん (アウアウエー Sa52-YOiG)2018/08/24(金) 04:04:32.75ID:9ULU2Heua
流行りの分野なのに過疎ってるなw

147デフォルトの名無しさん (ワッチョイ ead2-Gisg)2018/08/24(金) 04:27:49.76ID:/HKmPBJZ0
バリバリやってるような若い人は来ないんじゃね
今やひろゆきプラマイ3歳くらいのロートルおっさんの吹き溜まりでしかないから

148デフォルトの名無しさん (ワッチョイ 668a-wF79)2018/08/24(金) 18:27:13.17ID:6/Hl2w7N0
kaggleを仕事の世界に持ち込むメリットそこそこあるけどな
やっぱりkaggleで称号を持つぐらいの奴が会社にいれば
営業が社の強みとしてアピールできる材料に出来るだろうし
なにより流れ作業で仕事をしないことで、知識が蓄積されるから人材が育つ

識別器のライブラリだけ暗記して、直感の力で仕事をしている奴なんて
いずれは冷や飯を食うことになるから
ブームが続いている今のうちに、早く新しい分野を開拓しないと

149デフォルトの名無しさん (ワッチョイ 1e8a-vl9i)2018/08/24(金) 21:13:23.89ID:/I2dO3CP0
ブームは終わってる

150デフォルトの名無しさん (アウアウエー Sa52-YOiG)2018/08/24(金) 22:08:26.47ID:HU5uwe68a
>>148
中小企業ならどうかしらんが、チームで仕事するのに邪魔なだけ

151デフォルトの名無しさん (スップ Sdea-Iibt)2018/08/24(金) 22:17:03.65ID:44W3Jl8Zd
普通に働いてたらkaggleとかやる時間ないってw

152デフォルトの名無しさん (ブーイモ MM49-HQ8C)2018/08/24(金) 22:18:42.76ID:NZdsQ/EYM
社畜には時間がない

153デフォルトの名無しさん (アウアウウー Saa1-EM0A)2018/08/24(金) 23:45:08.95ID:4Fq5m83Sa
まだkaggleのコンペって参加したことないけど個人で上位入るような人ってどれぐらい時間かけてるんだろう?

154デフォルトの名無しさん (アウアウウー Saa1-UkrI)2018/08/25(土) 12:22:02.93ID:00w/RGH3a
これから失敗作のメンテナンスの仕事が増えるのかな?

155デフォルトの名無しさん (ワッチョイ 1e8a-EM0A)2018/08/25(土) 13:29:16.58ID:DbpiyqTC0
大企業で機械学習のエンジニアやっても
pandasでデータを読み込んで、sklearnで識別器を用意してデータに適合させて
予測を出して、識別精度を確認して、matplotlibでグラフに吐き出して、「ハイ、終わり!」
というイメージがある
実際はもっと大変なことしてるんだろうけど

156デフォルトの名無しさん (ワッチョイ 2a23-PcWx)2018/08/25(土) 13:33:08.64ID:lUMKao1I0
if文の分類で済む案件でも機械学習でやるのが最近のトレンド

157デフォルトの名無しさん (ワッチョイ a68a-vl9i)2018/08/25(土) 15:27:10.18ID:EiC1ChZC0
if then elseのは255個までだったかw

158デフォルトの名無しさん (ワッチョイ 5e76-axIE)2018/08/25(土) 16:07:18.11ID:rvalG9fC0
中国の一部のスタートアップは
機械学習とうたっていながら
後ろで人間が動いているそうだ

159デフォルトの名無しさん (ワッチョイ bd23-oIkv)2018/08/25(土) 16:15:01.69ID:XJJEagRp0
ネット検閲を人力でやる国だからな

160デフォルトの名無しさん (ワッチョイ 2d1e-vl9i)2018/08/25(土) 20:39:30.67ID:x0dm8Qgo0
NRIもそうだと、NRIスレで読んだ。

161デフォルトの名無しさん (アウアウウー Saa1-RyQV)2018/08/26(日) 00:54:53.86ID:ZXXU+XiBa
中国の人件費なら優秀なエンジニア雇うより人力の方が安上がりだろうなと思ったけど日本でもIT土方の人件費ならまあまあ安上がりか

162デフォルトの名無しさん (ワッチョイ ead2-Gisg)2018/08/26(日) 02:03:09.46ID:xGLfO5+N0
アルファ碁ってハードと電気代凄いんだっけ
古い話だがディズニー初CG映画のトロンのエンドロールで
CG風手書きの中国人クレジットが大量に出てたの思い出した

163デフォルトの名無しさん (ワッチョイ 2a23-PcWx)2018/08/26(日) 09:08:47.86ID:Y7gWViZy0
>>162
普通のPCだと計算に2万年掛かるらしいw

論文でこうやれば、とんでもなく強い将棋ソフトが出来るよ〜って発表されてるのに、
ハードのハードルが高すぎて、誰も再現できてない

164デフォルトの名無しさん (アウアウウー Saa1-EM0A)2018/08/26(日) 14:19:30.69ID:YDdfe8KHa
courseraのmachine learningの開講日が9/3って書いてるけどこれっていつでも好きな時に始められるんじゃなかったんだな

165デフォルトの名無しさん (ワッチョイ 2d1e-wF79)2018/08/26(日) 15:22:19.38ID:Vik0GRh80
深層強化学習は計算コスト高い

166デフォルトの名無しさん (アウアウエー Sa52-4dUf)2018/08/26(日) 15:43:18.52ID:zKxHvctla
人気も高い

167デフォルトの名無しさん (ブーイモ MM49-HQ8C)2018/08/26(日) 23:37:53.15ID:EQMoXtKGM
>>164
気にしないで開始したけど問題ないみたい

168デフォルトの名無しさん (ワッチョイ de4b-wF79)2018/08/27(月) 12:58:47.96ID:NrR+t5G40
この度、一度挫折した機械学習に再入門しようと思いこのスレに来たのですが、おすすめの書籍やサイトなどありますか?

169デフォルトの名無しさん (オッペケ Sr3d-90v3)2018/08/27(月) 13:33:39.51ID:IaPqXo0qr
Udemyで全講座1200円セールしてるから好きなの選んだら

170デフォルトの名無しさん (アウアウカー Sad5-aBcF)2018/08/27(月) 13:52:59.26ID:0RSt9/yYa
定番オライリーのゼロから

171デフォルトの名無しさん (ワッチョイ 668a-wF79)2018/08/27(月) 16:52:51.31ID:9Rk35fCU0
大学一年レベルの数学→最適化数学→はじパタ本→達人データサイエンティストによる理論と実践
これにプラスで、ゼロから作るdeep learningを読めば、ベースの知識は作れる

172デフォルトの名無しさん (アウウィフ FFa1-DNis)2018/08/27(月) 17:38:35.99ID:Q4eMB8PsF
ただしF欄は除く

173デフォルトの名無しさん (ワッチョイ b65a-/8lv)2018/08/27(月) 19:28:35.38ID:3tv7gyOX0
>>168
・やさしく学ぶ 機械学習を理解するための数学のきほん
・人工知能プログラミングのための数学がわかる本
・ゼロから作るDeep Learning(2冊)

174デフォルトの名無しさん (フリッテル MM2e-oIkv)2018/08/27(月) 22:19:47.74ID:S8OKJlGuM
kerasのLSTMって、まだpeepholeに対応してないの?

175デフォルトの名無しさん (スップ Sdea-Iibt)2018/08/27(月) 23:16:18.81ID:/KrSPkLld
tf で見たから使いようはあるでしょ

176デフォルトの名無しさん (アウアウウー Saa1-m2uu)2018/08/28(火) 02:12:53.08ID:mzHghCiAa
わかパタ買ったんだけど、その前にはじパタ読んだほうがいいの?

177デフォルトの名無しさん (アウアウウー Saa1-Zm8m)2018/08/28(火) 05:35:17.79ID:uOZLnoMMa
日本はAI・ロボット化の開発競争に敗れ国際競争力を失い下手をすると2025年あたりには一億総失業になる。

178デフォルトの名無しさん (アウアウウー Saa1-RyQV)2018/08/28(火) 07:55:50.04ID:GU2LbP2xa
機械学習を支える大学数学を学び直す 中井悦司著『技術者のための線形代数学』発売
https://codezine.jp/article/detail/11006

179デフォルトの名無しさん (ワッチョイ 2a23-vl9i)2018/08/28(火) 08:18:13.05ID:y25npp8k0
最近、技術系の書籍は壊滅的だったのに、
機械学習関連だけは大復活で色んな本が出てるね

180デフォルトの名無しさん (ブーイモ MM8e-/8lv)2018/08/28(火) 08:50:04.97ID:ESzSTJ18M
中身大して変わらないのにタイトルに「機械学習のための〜」とか付けると馬鹿が買ってくれる

181デフォルトの名無しさん (ワッチョイ 2d1e-wF79)2018/08/28(火) 09:15:49.81ID:nucg3hcz0
初学者向けの本が乱発してるのは
宣伝としてやってるんだよ。
本自体で稼ごうとしているわけじゃない

182デフォルトの名無しさん (ワッチョイ 2a23-PcWx)2018/08/28(火) 09:19:27.01ID:y25npp8k0
>>181
「やさしく学ぶ 機械学習を理解するための数学のきほん」のことですか?

183デフォルトの名無しさん (アウアウウー Saa1-Zm8m)2018/08/28(火) 10:12:48.93ID:AXaUJqBfa
>>181
石村夫妻が「よくわかる機械学習のための数学」とか長沼伸一郎氏がブルーバックス本を書かないのがおかしい。

184デフォルトの名無しさん (ブーイモ MM49-HQ8C)2018/08/28(火) 10:15:43.37ID:3VNxsysUM
機械学習の直感的解釈なんて本だと被るね。いま本書いてるひと皆弟子みたい

185デフォルトの名無しさん (ワッチョイ a5d2-wF79)2018/08/28(火) 11:22:51.50ID:d5FF+Adu0
【癌センター、収益UP】 ×さくらももこ(53) △貴乃花(46) ×亜利弥((45) △神の子KID(41)
http://2chb.net/r/liveplus/1535420186/l50

186デフォルトの名無しさん (ラクッペ MMed-NdIa)2018/08/28(火) 15:15:25.81ID:DCHZu+I+M
pythonとkerasによるディープラーニング買った
これでkeras極めるけどkerasくらいならこの本いらんかったかな…

187デフォルトの名無しさん (ラクッペ MMed-NdIa)2018/08/28(火) 15:17:58.39ID:DCHZu+I+M
ディープじゃない機械学習って学ぶ意味ある?
素人の素朴な疑問でごめん
sklearnはデータ分割する時くらいしか使わないなあって思って

188デフォルトの名無しさん (アウアウウー Saa1-Zm8m)2018/08/28(火) 15:19:13.14ID:+GOrwNtLa
>>186
tensorflowも一緒に。

189デフォルトの名無しさん (ラクッペ MMed-NdIa)2018/08/28(火) 15:25:32.48ID:DCHZu+I+M
>>188
グローバルなんちゃらイニシライザーとか長すぎんねん名前

190デフォルトの名無しさん (ワッチョイ 2a23-PcWx)2018/08/28(火) 16:37:58.23ID:y25npp8k0
>>187
ある

なんでもかんでもディープでやればいいってもんじゃない

191デフォルトの名無しさん (アウアウウー Saa1-RyQV)2018/08/28(火) 17:05:34.81ID:KK7wlqdUa
そもそもディープラーニングは機械学習の中の1つの分野でしかない

192デフォルトの名無しさん (ワッチョイ f923-DNis)2018/08/28(火) 17:24:23.27ID:6kEMX7h90

193デフォルトの名無しさん (ワンミングク MM7a-ScIy)2018/08/28(火) 19:39:00.69ID:wzkZgbuEM
>>187
なぜコンペでXGBoostやランダムフォレストが主流で使われているのか?
適材適所というものがあるのだよ。

194デフォルトの名無しさん (アウアウエー Sa52-YOiG)2018/08/28(火) 21:37:45.20ID:nyQJ+koHa
>>187
仕事で深層学習を付け焼き刃で使ってるけど、特に困ってないよ

195デフォルトの名無しさん (オイコラミネオ MM35-Dzpm)2018/08/28(火) 22:52:10.12ID:nisRN7fPM
ドット絵みたいな意味のある形を含む点群があったとして、その点群の中から学習させた意味のある形を検出したいです
なにか良さげなアルゴリズムとかありませんか?

196デフォルトの名無しさん (ワッチョイ 6681-ScIy)2018/08/28(火) 23:48:29.13ID:/fs3ieZp0
>>195
CNN

197デフォルトの名無しさん (ワッチョイ a54b-c68X)2018/08/29(水) 00:12:46.00ID:PwHTZQO10
機械学習ブームに乗って、生まれ変わったら異世界のデータサイエンティストだったで電撃に応募する

198デフォルトの名無しさん (ラクッペ MMed-7HHy)2018/08/29(水) 00:18:06.21ID:Aqt94EbEM
Kerasって便利なのにあんまし人気ないよね
なんで

199デフォルトの名無しさん (アウアウエー Sa52-YOiG)2018/08/29(水) 00:20:12.74ID:4x1+Uez8a

200デフォルトの名無しさん (スップ Sdea-Iibt)2018/08/29(水) 00:25:13.71ID:iKxOrgLNd
>>198
どこでの話だ、さすがにそれはない。
pytorch が猛追してるけど、tf + keras が圧倒的でしょ

201デフォルトの名無しさん (ワッチョイ 6681-ScIy)2018/08/29(水) 00:43:28.75ID:J5ZLnez10
ディープラーニングならKeras、他のアルゴはscikit-learn

202デフォルトの名無しさん (アウアウエー Sa52-YOiG)2018/08/29(水) 01:03:14.99ID:4x1+Uez8a
>>201
情報量も多いし取っ付きやすいし、一番現実的な選択だと思う

203デフォルトの名無しさん (アウアウエー Sa52-F86p)2018/08/29(水) 04:08:11.80ID:4LmLfDb3a
>>96
多数決システムにすれば良い

204デフォルトの名無しさん (アウアウウー Saa1-Zm8m)2018/08/29(水) 06:26:09.02ID:UP9EO1Hha
>>201
やはりgoogleのtensorflowだろ。

205デフォルトの名無しさん (ワッチョイ 6681-ScIy)2018/08/29(水) 07:42:15.00ID:J5ZLnez10
KerasのバックエンドはTensorFlow

206デフォルトの名無しさん (ワッチョイ 2a23-PcWx)2018/08/29(水) 12:46:20.23ID:WJGhptOe0
kerasの作者の本読んだら、
「ディープラーニングで相場の予想は出来ない。やるだけ無駄なので時間を捨てるのは止めとけ」って全否定されてたわ

わざわざ苦言を呈するくらい相場の予想させたいって奴ばっかりなんだろうね

207デフォルトの名無しさん (ワッチョイ 2d1e-wF79)2018/08/29(水) 14:12:36.60ID:slaughny0
相場予測系は詐欺商品多すぎでしょう

208デフォルトの名無しさん (ワッチョイ 35b3-pRMN)2018/08/29(水) 21:49:35.15ID:797j62Wx0
ドーパミンだって

Google、TensorFlowベースの強化学習フレームワーク「Dopamine」を公開
https://mag.osdn.jp/18/08/29/163000

209デフォルトの名無しさん (ワッチョイ db4b-BaxO)2018/08/30(木) 00:40:05.35ID:D8zsotkh0
まだTensorFlowでゴリゴリ書いてる奴おる?

210デフォルトの名無しさん (ワッチョイ 0580-rkYf)2018/08/30(木) 00:57:56.81ID:/0YXnEsV0
むしろTensorFlowはモデルが理解できてないヤツには使えない
それ以外のは機械学習がよく分からなくても使えた気になれる

211デフォルトの名無しさん (スップ Sd43-oLc3)2018/08/30(木) 02:35:27.51ID:DH3FHNZNd
>>209
というか、kerasがtensorflowに統合されたから両方のAPIを使ってる

>>210
まぁそうかもしれない

212デフォルトの名無しさん (アウアウウー Sa19-4azP)2018/08/30(木) 06:17:31.53ID:3sbg3Riaa
>>210
chainerなんかわかりやすいのに人気ない。

213デフォルトの名無しさん (アウアウエー Sa93-0TOv)2018/08/30(木) 07:27:24.38ID:sbjDtq1ra
もうchainer はいいよ。日本限定のフレームワークが流行るはずもない。
一時期、業者か何か知らんがくどいほどchainer の書き込みが続いてうんざりしたわ

214デフォルトの名無しさん (スップ Sd43-oLc3)2018/08/30(木) 07:45:55.05ID:TbxP/gqFd
>>212
今となってはpytorch使えばすむからな

>>213
ある時からレスが完全にピタッと止まって驚いた記憶がある。
業者かはともかく、一人で頑張ってた人がいたんだろうな

215デフォルトの名無しさん (ワッチョイ db76-ZtIo)2018/08/30(木) 08:20:43.41ID:GsTONwDd0
chainerは日本限定じゃないよ
ドキュメントも英語だし
海外の論文でも実装に使われていたりするし

216デフォルトの名無しさん (アウアウエー Sa93-0TOv)2018/08/30(木) 08:25:09.80ID:sbjDtq1ra
>>215
全く同じレスを繰り返し見た記憶がある。まだスレ見てたんだな。
前にも書いたけど、例外があることは全く反論にならないからな。現状はトレンド見ろ つ

https://trends.google.co.jp/trends/explore?cat=5&q=keras,chainer

217デフォルトの名無しさん (アウアウエー Sa93-0TOv)2018/08/30(木) 08:28:14.13ID:sbjDtq1ra
TensorFlow も含めると つ

https://trends.google.co.jp/trends/explore?cat=5&q=tensorflow,keras,chainer

218デフォルトの名無しさん (ササクッテロ Spf1-Mm8o)2018/08/30(木) 11:29:20.12ID:Aa6QMEJ0p
参考書とか見ながら機械学習の勉強始めて、初めて仕事でデータ分析的なことをやってみたんだけど絶望的に何も結果を出せない
データセットの理解も出来ないしどういうアプローチをしていけば良いのかも思いつかない
そもそも分析と呼べる領域にすら達してない
理解する頭やセンスも必要だと思うし自分も能力が低い人間なのは十分理解してるけど、分析能力はどうやって身につければ良いんだろう
やっぱり数こなすしかないかな?

219デフォルトの名無しさん (ワイーワ2 FF13-jOsm)2018/08/30(木) 11:38:50.75ID:S/vwwZyFF
ここに書けば親切なみなさんが教えてくれるはず

220デフォルトの名無しさん (ワントンキン MMa3-GSBA)2018/08/30(木) 12:49:37.88ID:EJNleK6cM
考えるな、感じろ、ちブルースリーグもジェダイマスターも言ってた

221デフォルトの名無しさん (ワンミングク MMa3-2Cin)2018/08/30(木) 12:55:22.85ID:dpvLtCB6M
>>218
差し支えない範囲で具体的に書いてみ

222デフォルトの名無しさん (ワイーワ2 FF13-jOsm)2018/08/30(木) 13:25:06.37ID:S/vwwZyFF
Don't use ThinkPad, FUJITSUUUUUUU!!!

223デフォルトの名無しさん (ワッチョイ 65b3-j9mh)2018/08/30(木) 13:41:21.70ID:NY8GEmPq0
>>218
オライリーの「仕事ではじめる機械学習」
って本はどう?

224デフォルトの名無しさん (ワッチョイ a323-tpL7)2018/08/30(木) 14:23:58.40ID:7HgxnLgF0
機械学習で重要なのは結果よりも、凄いことやってる感

225デフォルトの名無しさん (ササクッテロ Spf1-Mm8o)2018/08/30(木) 14:31:20.51ID:Aa6QMEJ0p
>>221
ほんとはめっちゃ詳しく書きたいけど誰が見てるから分からないから凄く端折ってるけど今はある装置のトラブル要因を調べてる
データは特徴量が200個あって1万レコードくらいある
ただこの装置自体は見たことがなくて装置自体の知見も浅い分野だからデータセットは理解できてない
明らかに要らなそうなデータは消して特徴量を選択して決定木にかけて、重要な特徴量に対してペアプロットを出すところまでは来た
プロットの結果は分類自体がほぼ出来ていなくて、唯一差が見れそうなところに見てみようと思ったんだけど、
結局そこはどこどこの数値が高くなると異常が出やすい、くらいの説明しか出来なくてその値がなぜ高くなるかを見つけ出すべきなんだろうけどデータや機構が分からなくて何から手をつけて良いか分からないってところで止まってる
こんなのは多分現場の人は感覚的に分かってる話だから何の意味もないよね

226デフォルトの名無しさん (ササクッテロ Spf1-Mm8o)2018/08/30(木) 14:34:28.66ID:Aa6QMEJ0p
>>223
ありがとう
帰り本屋寄ってみる
ちなみに昨日pythonによるデータ分析入門って買ったんだよな
俺はまだ分析の領域にも行けてないのになw

227デフォルトの名無しさん (アウウィフ FF19-jOsm)2018/08/30(木) 15:21:00.65ID:RB/VojpjF
民間ロケットかω

228デフォルトの名無しさん (ワッチョイ a323-tpL7)2018/08/30(木) 15:56:28.71ID:7HgxnLgF0
機械学習の腕は特徴量を選択するセンス次第

229デフォルトの名無しさん (ワッチョイ 65b3-j9mh)2018/08/30(木) 16:44:08.77ID:NY8GEmPq0
>>225
ああそういう話だとさっきの本は関係ないや
ビジネスの何に使えばいいかわからない
的な意味だと思ったんで

230デフォルトの名無しさん (ワッチョイ 351e-J7KC)2018/08/30(木) 17:17:26.23ID:lMDVbSRW0
>>225
>データは特徴量が200個あって1万レコードくらいある
直感的に、少なくない?

>ただこの装置自体は見たことがなくて装置自体の知見も浅い分野だからデータセットは理解できてない
それが問題じゃん。装置自体調べろよ。
ていうか物理現象を調べてるのか?
なら機械学習を使う意味があるのかがそもそもわからんな
しいていうなら相関の強いものを上から順に並べるとか
ヒステリシスを持っている可能性を考慮するために、プロット上げる方向と下げる方向を別変数にしたほうがいいかも

231デフォルトの名無しさん (ワッチョイ 8da5-Mm8o)2018/08/30(木) 18:48:13.32ID:zHnsz/ji0
>>230
特徴量200って少ないのか…
装置見れれば良いんだけど、身近にある物じゃないから見れなくてさ…
相関関係を見るなら重回帰かなと思って一応やってみたんだけど、言ってくれてる通り物理現象で動きには前回の動きとかも考慮して特徴量増やしたりしなくちゃいけないはずなんだけど結局データセットが分からないから行き詰まってしまった

>>ヒステリシスを持っている可能性を考慮するために、プロット上げる方向と下げる方向を別変数にしたほうがいいかも

これってどういう意味かな…
理解出来なくてごめん

232デフォルトの名無しさん (ワッチョイ 351e-J7KC)2018/08/30(木) 19:08:50.69ID:lMDVbSRW0
>>231
>特徴量200って少ないのか…
いや、変数200に対してデータ数10000は、
データのほうが少ないのではないか、と

>>ヒステリシスを持っている可能性を考慮するために、プロット上げる方向と下げる方向を別変数にしたほうがいいかも
>これってどういう意味かな…
ヒステリシスを持つ可能性があるため、パラメータは上げる方向と下げる方向、両方測定する
っていう実験物理の基本は知ってるよな?
パラメータ上がる方向と下がる方向は別の変数にしないと区別できないんじゃないか、と

233デフォルトの名無しさん (アウーイモ MM19-S4xg)2018/08/30(木) 19:15:05.96ID:QzSJYFXmM
データをアップしてくれないと
よくわからん

234デフォルトの名無しさん (ワッチョイ b52d-g5V3)2018/08/30(木) 21:14:55.66ID:JFBhQmXO0
ID:Aa6QMEJ0p
特定した。

お前には期待してたのだが、5chでアドバイスを貰おうとは見損なったぞ。
今後の査定を真摯に受け止めるが良い。

235デフォルトの名無しさん (ワッチョイ 351e-zBrR)2018/08/30(木) 21:35:27.97ID:NQz3sjtC0
>234
マジモンのチームメイトなら少しはサポートしてやれよ。
仮に上司だとして結果が出せない部下を放置って、今の時代ならパワハラ案件だろ。
まぁブラフだろうが。

236デフォルトの名無しさん (ワッチョイ 8da5-Mm8o)2018/08/30(木) 22:03:46.63ID:zHnsz/ji0
>>232
ぐ…よく分からん…ごめん
調べてみる…何かつかめるように頑張るよ

>>235
出来が悪い俺がダメだと思うよ
質問するにも何が分からないかすら分からない自分があまりにも無力…!
明日は何か少しでも前進出来るように頑張るよ

237デフォルトの名無しさん (スップ Sd43-SU0A)2018/08/31(金) 00:11:23.98ID:p6vKiofNd
これで5%返せるとか脳死こいてるバカがまだまだ多いんだな

238デフォルトの名無しさん (ワッチョイ 65b3-j9mh)2018/08/31(金) 01:40:33.97ID:/VjCJv9E0
>>236
説明変数(特徴量?)200と目的変数(トラブル)の
散布図行列を作るところからやってみては?
【統計分析】機械学習・データマイニング20 	YouTube動画>2本 ->画像>16枚

239デフォルトの名無しさん (ワッチョイ 0bd3-yCPC)2018/08/31(金) 01:58:16.50ID:NfYNCgTp0
>>238
変数多すぎて情報拾えないと思う。

240デフォルトの名無しさん (アウアウウー Sa19-lQkG)2018/08/31(金) 11:58:13.87ID:8oqZjBEKa
効いてる特徴量見たいだけだったら、ランダムフォレスト かxgboostでモデル作ってFeature Importance見ればいいんでない?
なぜ効いてるかについては別途考察が必要になるけど

241デフォルトの名無しさん (ワッチョイ a3b3-zJks)2018/08/31(金) 17:27:51.18ID:xOkTAq7n0
一万レコードは流石に少なすぎる…
うちだと特徴量30前後レコード数50万ちょっとでランダムフォレストしてやっと実用に足るレベル

242デフォルトの名無しさん (ワッチョイ a3b3-zJks)2018/08/31(金) 17:32:55.30ID:xOkTAq7n0
特徴量200だと相関関係にある特徴量同士や結果にまったく影響しない特徴量が多そうだな
そういうのを絞らないとメモリを食うだけで確実な結果が出ないと思う

243デフォルトの名無しさん (マクド FFe1-J7KC)2018/08/31(金) 20:20:22.26ID:1Ee7C22hF
>>225
装置の故障に関係のある特徴量を調べたいだけなら
ランダムフォレストではなく、もっと別の識別器を使った方がいいんじゃないか

244デフォルトの名無しさん (マクド FFe1-J7KC)2018/08/31(金) 20:35:34.13ID:1Ee7C22hF
ランダムフォレストは不純度の減少に関係ある特徴量を重要度でピックアップしてくれるだけだから
故障の原因を調べるなら、むしろ関係のない特徴量を削ったり、選択したりする方に
機械学習を使うべきだと思うんだ
ロジスティック回帰とか、KNNにSBSを適用するとか
いきなりランダムフォレストでがばっとやってるなら雑過ぎると思う

あと装置について何も知らないなら
分析結果を提出して仕事完了以外に何も出来ない気がするんだけど

245デフォルトの名無しさん (ワッチョイ 8da5-Mm8o)2018/09/02(日) 16:06:18.87ID:qpc9/9Oc0
>>225 です
レスくれた人ほんとにありがとう

一応自分では>>240で出した結果から重要度が高いものに対して>>238を出すところまではやってみた
ただ特徴量の選択だったり、自分で特徴量を増やしたりする必要がある可能性があったけどその辺が不十分だから正常時と不良時の変化は捉えきれなかった
急ぎの案件ではないから装置に詳しい人にもっと詳細に聞いてから見直してみる

246デフォルトの名無しさん (ワッチョイ 8da5-Mm8o)2018/09/02(日) 16:10:25.31ID:qpc9/9Oc0
>>242
自分なりに考えて削ったところ残ったのは半分くらいだった…選定が不十分だとは思うけど…

>>241
そんな多いんだ…
まだ素人だからその規模扱った事ないけど、データ数が少ないと使い物にならないのかな

>>244
特徴量の選択に機械学習を使うのか…
やったことないし考えたこともなかった
ロジスティック回帰は確率的に予測するモデルだっけ
KNNにSBSとか全然知らないからもっと勉強しないと…

今更だけどレス遅くなってすいません
やっぱ知識的な勉強もしなきゃだし、もっとkaggleみたいなので色々経験踏んだ方が良いのかな…

247デフォルトの名無しさん (アウウィフ FF19-jOsm)2018/09/02(日) 16:13:35.40ID:fTJM2v21F
>>238
この図って下三角は無駄やね

248デフォルトの名無しさん (ワッチョイ e3a5-jo4B)2018/09/02(日) 18:09:35.27ID:Gf+N3VgJ0
特徴200の例1万で正解ラベル付き、それでなんらかの故障の原因を
少数の特徴から説明をする必要性があるなら
PCAかけてからSVMでいいんじゃね?
ラベルないなら、明らかに異常時の正解ラベルを少数でも集めてから
アノマリーディテクション

それ以外になにかやりようがあるような案件に思えない

249デフォルトの名無しさん (ファミワイ FF29-zJks)2018/09/02(日) 22:15:22.45ID:aecTCx63F
ランダムフォレストって入門書で機械学習の勉強をしたら一番最後に習うジャンルじゃないか
理論的にはかなり難しい分類に入るはずなんだけど、最初にやったんかい
入門的な範囲に関していえば、NNなんかよりよほど複雑だよな

250デフォルトの名無しさん (ワッチョイ 0b81-2Cin)2018/09/02(日) 23:37:09.90ID:N8NA3iwF0
そうか?

251デフォルトの名無しさん (ワッチョイ db76-ZtIo)2018/09/03(月) 06:46:02.23ID:U0kvs2wf0
決定木好き
boostingも好き

252デフォルトの名無しさん (ブーイモ MM43-HIeS)2018/09/03(月) 08:17:31.91ID:EloH5MrPM
自分も>>230の通り装置自体の理解が先だと思う

つーかkaggleしかやったことのない新卒を現場に出すと
大抵 >>225 みたいになるので笑える

225は素直だしやる気もありそうだから大成すんじゃない?

253デフォルトの名無しさん (アウアウウー Sa19-920O)2018/09/03(月) 08:23:54.20ID:6BBBjiRUa
新人なんだったら上司としては笑ってる前にとっとと装置持ってくるか設置場所に連れて行って触らせろよ

254デフォルトの名無しさん (ワッチョイ 0b8a-J7KC)2018/09/03(月) 15:29:21.33ID:wK4QWbzI0
割り振られた仕事が酷いだけな気がするんだけど
不良品検知なら機械学習は有用だけど、トラブルの原因の特定とか厳し過ぎるだろ
俺が同じ仕事を課されても出来ない自信がある
まだ今後の仕事に繋がるスキルなら学ぶ気にもなるけど
一回限りの仕事でこれだったら職場を変えたくなるなw

255デフォルトの名無しさん (ワッチョイ a323-zBrR)2018/09/03(月) 16:17:20.76ID:rtNqvOTp0
>>254
確かにw

トラブルの原因とか、装置メーカーの仕事だろw

256デフォルトの名無しさん (ワッチョイ 351e-J7KC)2018/09/03(月) 16:19:13.14ID:9EJYXAO+0
作った人間呼ばないと分からないからね

257デフォルトの名無しさん (ササクッテロレ Spf1-oMiI)2018/09/03(月) 17:45:38.06ID:wkT01G1zp
>>254
トラブルの原因特定が目的として
機械学習を手段として用いるのは何故?
そう言う指示なのかな

258デフォルトの名無しさん (オッペケ Srf1-NIU1)2018/09/03(月) 21:12:36.40ID:dnewFDCcr
機械学習でなんかやってくれ
Iotでなんかやってくれ
AIでなんかやってくれ

259デフォルトの名無しさん (アウアウウー Sa19-zJks)2018/09/04(火) 10:56:36.92ID:5dUU1YfQa
機械学習エンジニアとして数学を理解しておきたい!ベクトルや行列を扱う線形代数学を学び直すために
https://codezine.jp/article/detail/11023

260デフォルトの名無しさん (ラクッペ MMd1-BaxO)2018/09/05(水) 12:59:13.40ID:b1qw9eMxM
機械学習の勉強やめるわ
物体検出が目標だったけど難しそうだからやめる

261デフォルトの名無しさん (ラクッペ MMd1-eZ+R)2018/09/05(水) 14:05:00.69ID:QYJ58+nmM
素人がこの分野に来るな!
二度と戻ってくるな

262デフォルトの名無しさん (ラクッペ MMd1-BaxO)2018/09/05(水) 14:29:43.54ID:b1qw9eMxM
>>261
お前は物体検出できんの?

263デフォルトの名無しさん (ワッチョイ 5dc6-Nyx8)2018/09/05(水) 14:30:57.14ID:cIoMrnpd0
やめた人はバイバイ
さようなら

264デフォルトの名無しさん (ブーイモ MMab-y1il)2018/09/05(水) 17:36:23.04ID:gDzPhGyvM
何気ない挨拶に隠れてるありがとう

265デフォルトの名無しさん (アウアウウー Sa19-920O)2018/09/05(水) 19:44:56.33ID:5UFd+wbIa
courseraやってたらいきなり「カクテルパーティーは行ったことありますよね?」とかいわれた

266デフォルトの名無しさん (ブーイモ MMab-gs5c)2018/09/05(水) 20:10:38.61ID:zx26krSSM
コーセラの機械学習コースムズいね。副読本が欲しい

267デフォルトの名無しさん (アウアウエー Sa93-8dGN)2018/09/05(水) 21:19:39.48ID:LgMQqqcwa
つ 2ch

268デフォルトの名無しさん (ワッチョイ 558a-OH3g)2018/09/05(水) 22:15:23.53ID:wwN3L3jw0
>>264
馬渡

269デフォルトの名無しさん (ワッチョイ c78a-fTNn)2018/09/06(木) 08:25:46.34ID:GEddJh7F0
ケーセラ、ケーセラ、なるようになるさ、ケーセラ、セラ♭

270デフォルトの名無しさん (ワッチョイ 7a23-fTNn)2018/09/06(木) 09:37:35.55ID:x1lI3fWk0
>>266
なんとか3週目まで終わったわ!

英語だとなんとなく理解がぼやけて苦労してる

271デフォルトの名無しさん (アウアウウー Sa77-fYFo)2018/09/06(木) 11:38:29.38ID:7zkKFy0ua
courseraは動画は日本語字幕付いてるが問題やテキストは当然英語なので英語のリーディング能力によって速度が全然違ってくる

272デフォルトの名無しさん (ブーイモ MM06-QmBv)2018/09/06(木) 11:53:54.00ID:EvGxKfYgM
octaveがムツカシイぞ

273デフォルトの名無しさん (ラクッペ MM3b-b4n1)2018/09/06(木) 12:48:10.39ID:ntAiYVJqM
ここの奴ってministの延長しかできないんでしょ
物体検出できる奴いないの?

274デフォルトの名無しさん (ラクッペ MM3b-b4n1)2018/09/06(木) 12:48:43.28ID:ntAiYVJqM
スペルミスったわwwwwwwwwwwwww

275デフォルトの名無しさん (ブーイモ MM06-QmBv)2018/09/06(木) 12:55:47.21ID:EvGxKfYgM
数カ月待てばワイがなるやで

276デフォルトの名無しさん (ラクッペ MM3b-b4n1)2018/09/06(木) 12:56:40.60ID:ntAiYVJqM
>>275
一ヶ月俺がやってmnist理解したから数ヶ月じゃ無理じゃね?

277デフォルトの名無しさん (ラクッペ MM3b-b4n1)2018/09/06(木) 12:57:02.77ID:ntAiYVJqM
やっぱいけるかもな
効率よくやれば

278デフォルトの名無しさん (アウアウウー Sa77-Ok55)2018/09/06(木) 13:23:00.99ID:hdmlXJ0Ba
高精度のモデル作るだけでお金もらえる仕事ないかな〜

279デフォルトの名無しさん (アウアウウー Sa77-fYFo)2018/09/06(木) 13:47:17.51ID:aZ3qvCMza
>>278
kaggle

280デフォルトの名無しさん (ワッチョイ e36e-HcYj)2018/09/06(木) 16:12:49.44ID:eIqRmgxb0
kaggleの一番の問題点は、計算資源は自前調達なこと

281デフォルトの名無しさん (ブーイモ MMda-QmBv)2018/09/06(木) 16:49:43.44ID:hpVTS5J7M
普通のPCでカグりたい。svmもこれから勉強(汗

282デフォルトの名無しさん (アウアウウー Sa77-fYFo)2018/09/06(木) 17:46:24.65ID:n8sIsSj/a
個人で10万円台のPCでkaggleコンペの賞金圏内って狙えるものなの?

283デフォルトの名無しさん (ブーイモ MMda-QmBv)2018/09/06(木) 18:22:05.64ID:hpVTS5J7M
仮想通貨の採掘みたいになってくるんか。

284デフォルトの名無しさん (ガックシ 0656-QXdG)2018/09/06(木) 18:33:14.28ID:oTJZiE1f6
初めまして失礼します
最近tensorflowにて機械学習を始めました。参考にしている下記サイトのソースコードを読んでいるのですが
http://docs.fabo.io/tensorflow/model_sequence/rnn_basic.html

このサンプルコード中のどの変数に最終的なテストデータの実行結果が格納されているのでしょうか?
親切に [0,1,2,0,・・・,0,1]のように格納されているのか、はたまた評価関数がsoftmaxなのでargmaxを使って取得するのか・・・分かる方ご教授いただけるとありがたいです。

285デフォルトの名無しさん (アウアウエー Saf2-jlvl)2018/09/06(木) 19:06:23.57ID:ft00C17ua
>>284
loss_test_ と acc_test_

286デフォルトの名無しさん (ワンミングク MMaa-qEbW)2018/09/06(木) 19:34:02.13ID:WZQ2BMHpM
>>281
コホーネンこそ至高(嘘)

287デフォルトの名無しさん (ガックシ 0656-QXdG)2018/09/06(木) 19:52:27.22ID:oTJZiE1f6
>>284 追記です
ソースコード中のtf.argmax(pred,1)に実行結果が格納されているのは分かったのですが、
これをどう取得すればいいのかがわかりません
print(pred)やprint(tf.argmax(pred,1))等をsess.close()(ソースコード内の最後の行)の前後に入れてみたりしましたが
Tensor("ArgMax_2:0", shape=(?,), dtype=int64)このような出力がされるだけでした

288デフォルトの名無しさん (ガックシ 0656-QXdG)2018/09/06(木) 19:53:40.60ID:oTJZiE1f6
>>285
書き込んでいるうちに返答が・・・argmaxの方じゃないのか・・・試してみます

289デフォルトの名無しさん (ガックシ 0656-QXdG)2018/09/06(木) 19:59:15.30ID:oTJZiE1f6
acc_test_は精度の%表示の方がでてきました。
取得したいのはモデル学習後にテストデータを通した際の出力結果で
文章が足りなかったみたいです、すみません
お分かりになればご教授ください

290デフォルトの名無しさん (スップ Sdda-1Dsd)2018/09/06(木) 20:04:09.83ID:N8vSkMund
>>289
多分 tf の理解不足、テストデータを与えた出力は >>285 さんので合ってる

291デフォルトの名無しさん (スップ Sd7a-T0RZ)2018/09/06(木) 21:06:50.37ID:gGQNDXVXd
>>290
外出中につきID変わりまして失礼します
acc_test_をそのままprintするのではなく何かを追記すると出力層の結果もでるのでしょうか?

292デフォルトの名無しさん (スップ Sd7a-+7AT)2018/09/06(木) 21:30:30.68ID:dF1C4l95d
eval()使わないとテンソルの内部は見られないねえ
print(pred.eval())
みたいに書くといいよ

293デフォルトの名無しさん (ワッチョイ bbb3-bKDI)2018/09/06(木) 21:30:42.99ID:8Gs/SO310
>>280
Google Colaboratoryだかって使えないの?

294デフォルトの名無しさん (スップ Sd7a-T0RZ)2018/09/06(木) 21:56:39.64ID:gGQNDXVXd
>>292
ありがとうございます
帰宅したら試してみます

295デフォルトの名無しさん (ワッチョイ 4fa5-pRHT)2018/09/06(木) 23:13:24.87ID:42ButyNI0
教師なし学習の部分勉強し始めたけどこれまた難しい
主成分分析とかめっちゃややこしい…
詰まりすぎて参考書進まない

296デフォルトの名無しさん (ワッチョイ 17c3-HcYj)2018/09/07(金) 02:43:59.86ID:i5TKiFX30
mfccを特徴量にして深層学習をしようと思ったけどあまり学習しない・・・
たぶんmfccをそのまま使うと値の差が大きすぎるからだろうけどこういう場合の正規化って何が一般的なんだろう?

297デフォルトの名無しさん (ワッチョイ a31e-O+me)2018/09/07(金) 03:39:19.22ID:4D0gsWdJ0
音声処理は専門外だけど、
信号処理の一般論として多重に関数通すほど精度低下するからよくないぞ

298デフォルトの名無しさん (アウアウウー Sa77-hmcY)2018/09/07(金) 22:28:06.25ID:xcgQ57X/a
Courseraのカーネル法の説明、あれで分かる奴おるんか?

299デフォルトの名無しさん (ワッチョイ 0b4b-ydPo)2018/09/07(金) 23:54:38.38ID:AkwTHGBK0
コーセラ化粧品歌謡ベストテン

300デフォルトの名無しさん (スプッッ Sdda-7Kzs)2018/09/08(土) 12:29:52.26ID:zjq/iq32d
カーネル法はカーネル法の項目で分けるべきだと思うんだけどな
応用先はサポートベクトルマシンだけでない。
主成分分析、巡回セールスマン問題など多種多様

301デフォルトの名無しさん (ワッチョイ c78a-fTNn)2018/09/08(土) 13:55:28.59ID:dJjhtWR30
カーネル三打数

302デフォルトの名無しさん (ブーイモ MM97-QmBv)2018/09/08(土) 15:15:07.20ID:phMov0/0M
何週間かしたら追いつくからちょっと待っててね♡

303デフォルトの名無しさん (ブーイモ MMaf-qEbW)2018/09/08(土) 22:11:42.69ID:Mc6Ny40VM
そんなあなたにRANSAC

304デフォルトの名無しさん (ワッチョイ 7a23-fTNn)2018/09/09(日) 08:25:27.74ID:Uy32x6ZT0
最初Octave覚えるのうぜえ、とか思ってたけど、
Octaveに慣れると、numpyの行列表現が面倒くさくてたまらなくなるね

305デフォルトの名無しさん (ブーイモ MM97-QmBv)2018/09/09(日) 09:02:42.81ID:eiptmUtyM
ex2のcost関数はiでforループ回してsumしてくしかないのかなあ。octaveなら全データまとめてベクトル演算出来ないかと期待してたんだけど

306デフォルトの名無しさん (ワッチョイ 0b4b-ydPo)2018/09/09(日) 10:04:24.64ID:13i/0Tbj0
numrubyとかまだですか?

307デフォルトの名無しさん (ワッチョイ 7a23-fTNn)2018/09/09(日) 11:24:58.51ID:Uy32x6ZT0
>>305
forループなしで行けるよ

308デフォルトの名無しさん (スプッッ Sd7a-iA6g)2018/09/09(日) 11:37:36.75ID:vA+7RJ4hd
AIってなんで言語の意味が理解出来ないの?

309デフォルトの名無しさん (ワイーワ2 FFb2-x/oF)2018/09/09(日) 11:40:09.66ID:kzlGF2pOF
言語に意味が無いからかも知れないね

310デフォルトの名無しさん (ラクッペ MM3b-QWFi)2018/09/09(日) 11:40:19.63ID:l6rR/pccM
>>308
プログラミング言語理解してるじゃん

311デフォルトの名無しさん (ブーイモ MMaf-QmBv)2018/09/09(日) 13:02:46.43ID:qrt/xXSoM
>>307
どうしてもJの値が期待値の3倍になっちゃうので完全ベクトル化は諦めたよ

312デフォルトの名無しさん (アウアウウー Sa77-X0d4)2018/09/09(日) 15:07:04.37ID:mmYNGw0Ja
courseraの2週目まで来てやっとプログラミング課題始めたけどこれ英語ダメダメな人には結構無駄に時間かかりそうだな
自分はある程度読めるからいいけど英語アレルギーの人には15ページの英文テキストとかハードル高すぎだろう

313デフォルトの名無しさん (ラクッペ MM3b-QWFi)2018/09/09(日) 15:30:17.72ID:l6rR/pccM
突然の英語自慢

314デフォルトの名無しさん (アウアウウー Sa77-fYFo)2018/09/09(日) 17:05:22.17ID:GZ1hf7rYa
あの程度の英文が読めるというだけのことが自慢と感じてしまう人って・・・

315デフォルトの名無しさん (ワッチョイ 8723-x/oF)2018/09/09(日) 17:10:44.73ID:5zyWb3dg0
チラシは日記の裏に

316デフォルトの名無しさん (ラクッペ MM3b-QWFi)2018/09/09(日) 17:11:54.64ID:l6rR/pccM
いや、大学で論文書いてるし講座受けたことないから知らん

317デフォルトの名無しさん (ワッチョイ 3aaf-2t+5)2018/09/09(日) 17:20:40.89ID:UfwTkuaF0
会話が成立していない・・・

318デフォルトの名無しさん (ワッチョイ 8b80-f65Y)2018/09/09(日) 17:44:28.00ID:V1LakR3i0
まず自身が学習する知能すらないヤツラが
機械学習とかいってるのがな

319デフォルトの名無しさん (アウアウエー Saf2-eMuy)2018/09/09(日) 17:53:25.90ID:0fxeknbWa
機械を使って能力を補完するのは
誰にでもありそうな要求じゃないのか

320デフォルトの名無しさん (ワッチョイ 8b80-f65Y)2018/09/09(日) 17:55:20.90ID:V1LakR3i0
機械学習という強化学習は体罰と同じだからな
つまり体罰は科学的に正しい

321デフォルトの名無しさん (ワッチョイ 8b80-f65Y)2018/09/09(日) 17:58:41.37ID:V1LakR3i0
マウスはサッカリンが大好き

エサ箱にサッカリンおくと
マウスはひたすらサッカリンをなめる

そんなマウスに
サッカリンなめると高圧電流を与える
それを繰り返す

するとな
マウスはサッカリンなめなくなる

しばっきんぐを伴う学習は
ものすごく適切な科学的教育メソッドといえる

322デフォルトの名無しさん (アウアウウー Sa77-fYFo)2018/09/09(日) 18:04:27.61ID:xD81Fsxha
それは単純作業をひたすら行うだけのための教育には最適だろうが自分で考える高度な仕事をできるようになるための教育としては全く機能しない
餌食べると電流来るから餌食べない、ではなく電流を止めるかそんな実験してる者を殴りに行くことが本当は求められる

323デフォルトの名無しさん (ワッチョイ aee8-ydPo)2018/09/09(日) 18:05:59.59ID:XkNFsZ520
>>320
本当に教育目的ならね
でも実際は自分の言うことを聞かないなどの感情任せで叩いたり
現実の教師には幼稚な人間が多いから体罰を許可するのは難しい
AIによる教育が普及したら体罰の導入もあるかもねw

324デフォルトの名無しさん (ワッチョイ 8b80-f65Y)2018/09/09(日) 18:19:48.08ID:V1LakR3i0
人間も刺激を受けて
微弱な電流の電気信号を脳に伝えて(コレが入力)
NNにちかいものを脳みそで構成しながら(コレが処理)
反応してるだけなのは(コレが出力)
ほぼ間違いないからな

キミラはその中でもかなりできそこないの肉塊なワケ
キミラはまずその自覚がないといけない

325デフォルトの名無しさん (ワッチョイ ae67-bLrU)2018/09/10(月) 09:12:54.23ID:Wzurv1WZ0
何かに例える奴って本質の部分をずらして解釈させようとするから好きじゃない。

326デフォルトの名無しさん (ワッチョイ c78a-fTNn)2018/09/10(月) 09:33:18.80ID:m4rWRRun0
DLは沈みかけた船である

327デフォルトの名無しさん (ワッチョイ 7a23-fTNn)2018/09/10(月) 09:40:32.89ID:50R16uEf0
>>326
今勉強中なのに〜

328デフォルトの名無しさん (スッップ Sdda-7Kzs)2018/09/10(月) 10:12:27.17ID:eJoeF+lzd
>>325
同意ですね。
特にこの分野はそうゆう説明をする人が多すぎる気がします。

329デフォルトの名無しさん (ワッチョイ a31e-O+me)2018/09/10(月) 11:29:39.10ID:E/R/CTAA0
ていうかわかってないんだよ
ワイアードの機械学習関係の記事もめちゃくちゃだし。記者も理解してない。

330デフォルトの名無しさん (ワッチョイ 8723-1KxL)2018/09/10(月) 11:45:38.06ID:iZZh4uSH0
ただの多項式近似じゃだめなんですか

331デフォルトの名無しさん (JP 0Haf-A9RE)2018/09/10(月) 12:57:17.68ID:9PCR6mO1H
いい場合もある

332デフォルトの名無しさん (ササクッテロル Spab-r7Fj)2018/09/10(月) 14:59:32.62ID:/bmRPvCfp
>>324
化学物質とか細胞とかも関係している
どの程度の影響かは知らないけど

333デフォルトの名無しさん (ワッチョイ 16e7-8LvS)2018/09/10(月) 16:07:18.13ID:vhv/YhfM0
海外IT大手勤めかPFNか東大松尾研関連の人のTwitterやスライドは参考になる
あとarxivで論文読んでレビューしてる人達(一次)も参考になる
それに海外にさきがけて論文内容を実装してる人とそのgithub
QiitaでCNN,RNN,LSTM,GANなどのモデルの基礎を詳細に解説してる記事は初心者〜中級者には参考になる

でも日本の情報は大体ここまでだね
日本で画期的なモデル作り出してsota達成してる人なんていないし
業務応用の事例は基本的に社外秘だから表に出てこない

334デフォルトの名無しさん (スプッッ Sdda-1Dsd)2018/09/10(月) 19:24:21.95ID:ujR9/fQ2d
>>333
そもそも日本人が書いたもんとか読むだけ時間の無駄。元ネタ読むほうがわかりやすい

335デフォルトの名無しさん (スップ Sd7a-7Kzs)2018/09/10(月) 19:28:41.58ID:C7NXl1Sfd
海外論文のほとんどは、既存の方法のマイナーチェンジですね。

論文の数で劣っても焦るべきはそこではない

336デフォルトの名無しさん (アウアウウー Sa77-fYFo)2018/09/10(月) 19:42:40.10ID:7yBcyw9Aa
マイナーチェンジでない新手法の開発数で比較した上でそれを言うならいいけどどうせそんなの調べてないんだろ

337デフォルトの名無しさん (アウアウエー Saf2-Y6TH)2018/09/10(月) 19:52:04.55ID:6ZeiSgzaa
日本なんか遅れまくってるんだから
先進国のペーパー読んだほうがそりゃマシだろw

338デフォルトの名無しさん (アウーイモ MM77-6X/Q)2018/09/10(月) 20:20:02.48ID:EC/DTJGVM
まつおけんてそんなにいい?
御用達なだけじゃん

339デフォルトの名無しさん (ワッチョイ 8b80-f65Y)2018/09/10(月) 20:46:12.02ID:XzQQxj6r0
低学歴知恵遅れは
NNモデルは半世紀以上前からあるモデルの焼き直しなのすらわかってないからな

低学歴知恵遅れに限って基礎も分からずにムダにいきってるワケ

340デフォルトの名無しさん (ワッチョイ 8b80-f65Y)2018/09/10(月) 20:48:45.69ID:XzQQxj6r0
NNモデルなんかウンコみたいなエキスパートシステムがはやってた頃からすでに存在する
コレもきっとな同じ道を歩むことになる
予言するわ

341デフォルトの名無しさん (ワッチョイ c78a-fTNn)2018/09/10(月) 20:57:12.65ID:MuwSsVH00
予言(笑)

342デフォルトの名無しさん (ワッチョイ 8b80-f65Y)2018/09/10(月) 21:02:22.48ID:XzQQxj6r0
エキスパートシステムみたいな山盛りのウンコができると
予言してるワケ

343デフォルトの名無しさん (ブーイモ MM97-QmBv)2018/09/10(月) 21:08:06.77ID:PkSNOikBM
20年前エキスパートシステムやってた大学の先生がAIメチャメチャdisってたな。講義で学生相手に悲観的なことばっか言ってな。今どうしてんだろ。ヒャッハー?

344デフォルトの名無しさん (ワッチョイ c78a-fTNn)2018/09/10(月) 21:18:31.46ID:MuwSsVH00
物体認識も人工知能(NNでない奴)だったね

345デフォルトの名無しさん (ワッチョイ 4f8a-7Kzs)2018/09/10(月) 21:54:13.12ID:KNaZjqz80
>>336
比較した上で一点だそ

346デフォルトの名無しさん (ワッチョイ 4f8a-7Kzs)2018/09/10(月) 21:59:29.51ID:KNaZjqz80
まあ、一人でよいから飛び抜けた天才がいればよい話

347デフォルトの名無しさん (ワッチョイ 17c3-w21S)2018/09/11(火) 00:27:02.76ID:NOGFJ9cK0
なんだ俺のことか…

348デフォルトの名無しさん (ワッチョイ a31e-O+me)2018/09/11(火) 01:13:57.47ID:CF7cPemC0
中級者向けの記事なんて書いても利益にならんからな
初心者向けなら宣伝になって仕事の依頼がくることも期待できるが

349デフォルトの名無しさん (ワッチョイ ae67-bLrU)2018/09/11(火) 08:52:46.82ID:iNoPJA0t0
もう少しきれいな言葉で語りませんか?

350デフォルトの名無しさん (ワッチョイ 1667-QmBv)2018/09/11(火) 10:11:02.09ID:fg41yUTF0
確かにお前ら中華スマホスレ以下

351デフォルトの名無しさん (ワッチョイ c78a-fTNn)2018/09/11(火) 12:14:16.02ID:4gQtUupo0
割れ鍋に綴じ蓋

352デフォルトの名無しさん (アウアウウー Sa77-fYFo)2018/09/11(火) 12:30:05.64ID:6r2pdA4Ca
技術記事自体で利益出そうと考えること自体が技術者としての本来の在り方から乖離してるけどね

353デフォルトの名無しさん (ブーイモ MM97-iA6g)2018/09/11(火) 12:34:15.31ID:7J4Wi8hoM
技術がカネにならない日本はおかしい。シリコンバレーの後追いしかしてないフリーライダー。

354デフォルトの名無しさん (ワッチョイ c78a-fTNn)2018/09/11(火) 13:25:38.94ID:QkogAA+k0
技術がないだけの話

355デフォルトの名無しさん (アウウィフ FF77-x/oF)2018/09/11(火) 14:33:28.09ID:pwo3DQbpF
この本おすすめですか?
https://www.amazon.co.jp/dp/4862464181

356デフォルトの名無しさん (ワントンキン MMaa-mpdH)2018/09/11(火) 15:52:06.10ID:RLpo6MncM
いいえ

357デフォルトの名無しさん (ワッチョイ 13b3-rySY)2018/09/11(火) 18:00:10.08ID:yZhXOY2F0
クラス分類できへんねやったら回帰分析しかないんですか?

358デフォルトの名無しさん (ワッチョイ 8b80-f65Y)2018/09/11(火) 23:32:24.35ID:i7axZbyN0
1層のNNは回帰分析と同じだからな

359デフォルトの名無しさん (ワッチョイ 7a23-fTNn)2018/09/12(水) 07:04:31.28ID:YcGHenXr0
人間の脳のように学習するって誇大広告じゃね?

中身はロジスティック回帰を何層もやってるだけじゃん

360デフォルトの名無しさん (ササクッテロレ Spab-r7Fj)2018/09/12(水) 08:09:25.15ID:ViqDYntmp
>>359
そう思うなら一つのロジスティック回帰を再帰的に使って同じ結果を出せるか実験してみたらいいのでは?

361デフォルトの名無しさん (ワントンキン MMaa-TilJ)2018/09/12(水) 08:13:40.79ID:whXEmiXCM
一つのロジスティック回帰では無理だろ
>>359 はそんな事言ってないし

362デフォルトの名無しさん (ワッチョイ 1667-QmBv)2018/09/12(水) 12:09:21.11ID:O9T0GfKp0
人間の脳も所詮ロジスチック回帰ってこと。。。

363デフォルトの名無しさん (アウーイモ MM77-rIyb)2018/09/12(水) 16:05:15.80ID:qQh33xQPM
クラス外のデータの排除に効率的な方法は何ですか?
例えば、0〜9の数字10クラスのネットワークに「b」の文字を入力する場合を考えた時に
理想的には全クラス10%くらいの確率ラベルを持ってくれたらいいのですが
恐らく結果は6が高確率で帰ってくる気がします。
適当に数字以外の文字を詰め込んで11個目のunknownクラスを作ることは効果があるのですか?

364デフォルトの名無しさん (ワッチョイ ae8a-Y6TH)2018/09/12(水) 19:36:37.61ID:YQnfCYrX0
>>363
こっちが専門じゃないだけかもしれないけど、おそろしく何を言ってるのか分からない
deep learningのような分類器で、画像データを10のクラスに仕分けたいけど、
特定のクラスに偏りが生まれるからどうすれば良いかということか

一般論として、deep learningならば、ノイズを混ぜるのは場合によりけりだけど有効だろ
新しいクラスを作るのは、ちょっとわからんなあ

365デフォルトの名無しさん (ワッチョイ ae8a-Y6TH)2018/09/12(水) 19:40:44.82ID:YQnfCYrX0
データを多く仕分けられるクラスに、データが仕分けられにくくなるように
損失関数に、データ量に比例して増えるペナルティーを追加すればいいんじゃないか

366デフォルトの名無しさん (ワッチョイ ae8a-Y6TH)2018/09/12(水) 19:47:03.20ID:YQnfCYrX0
一回限りの分析なら、手入力で特定のクラスの損失関数に
手入力でペナルティーを追加して、そのクラスに分類されにくくするのも手だと思うんですよ?
そんなやり方でも、いちおう分析結果は平らにはなるよね。たぶん。わからんけど

367デフォルトの名無しさん (アウーイモ MM77-rIyb)2018/09/12(水) 19:54:51.80ID:qQh33xQPM
>>364
(自分なりに)もう少し分かりやすく書き下しますと、

この世のありとあらゆる果物が成ってる木があるとして、
この木の画像の中から、リンゴとミカンとブドウを見つけて自動収穫したいタスクがあるとします。
リンゴとミカンとブドウの画像を学習させて分類器を作ったのですが、青リンゴやデコポンやマスカットが学習させた果物と誤認識されて収穫されてしまいます。
学習せた3つの果物以外は収穫したくないので、認識して欲しくないのですがどうすれば良いですか?ということです。
(分かりにくかったらすみません。)

368デフォルトの名無しさん (ワッチョイ a31e-O+me)2018/09/12(水) 20:00:27.22ID:VFbeL2mC0
わかりにくくなったよ

369デフォルトの名無しさん (アウアウウー Sa77-fYFo)2018/09/12(水) 20:02:57.63ID:hCIGPJ5ma
>>363が言いたいのは数字画像を読み込んで数値を出力したい、ただし入力が数字でない画像だったら数字でないと出力させたいってことだろう

370デフォルトの名無しさん (ワッチョイ b3eb-fTNn)2018/09/12(水) 20:36:27.66ID:WakPudgX0
数字以外の画像を適当に[0.1..0.1]のベクトルになる教師データとして流し込めば
そういう分類器ができるんじゃないの

371デフォルトの名無しさん (アウアウウー Sa77-fYFo)2018/09/12(水) 20:50:09.10ID:kc7HFSnfa
数字以外の想定し得るあらゆる文字のデータを学習させる必要があるから非現実的だろうね
数字にだけ共通する特徴があるなら最初に数字か数字でないかだけの分類をすればいいけどそんな特徴ないだろうし難しい

372デフォルトの名無しさん (ワッチョイ 8b80-f65Y)2018/09/12(水) 21:07:10.31ID:yfKtIfo20
認知機能が低いこのスレいるような低学歴知恵遅れが写真をみると
コレは心霊写真だという

コレは俗に言うシミュラクラ現象になる

ウンコAIに顔認識をさせると
コレと同じような現象が発生してもなにもおかしくない

コレは出力結果としてものすごいおかしいとはいえない
特徴どおりだからな

373デフォルトの名無しさん (ワッチョイ 8b80-f65Y)2018/09/12(水) 21:13:35.69ID:yfKtIfo20
文字だけの識別なら数量化I類で十分
数量化I類でもかなりの精度になる

374デフォルトの名無しさん (マクド FF73-Y6TH)2018/09/12(水) 23:04:27.74ID:agseH4x1F
ひとつの分類器でふたつのことを同時にやらなければいいんじゃね?

@一個の数字画像を、10個のクラスに仕分ける
Aその画像が本当に仕分けられた数字と同じか否かを判定する

このふたつの段階に分けれて、別々の分類器を用意すれば、そんなに難しいことしなくても簡単に組めそう。
@のためのニュートラルネットワークの分類値と、Aのためのクラスごとの分類器を10個用意する必要があるけど、
Aの分類器はたぶん同じようなアルゴリズムで動くから書くの簡単だろ

ただの思いつきだけど、どうだ?

375デフォルトの名無しさん (ワッチョイ 8b80-f65Y)2018/09/12(水) 23:12:15.60ID:yfKtIfo20
ぜんぜんわかってないわ
特徴抽出をするのが先だからな

特徴抽出されたデータを学習させない限り
いつまでたっても学習効果なんかない

376デフォルトの名無しさん (アウアウエー Saf2-r7Fj)2018/09/12(水) 23:42:58.48ID:MXOsLPIga
>>363
まず数字かそれ以外かを分類してみるとか
で数字のものについて0-9のどのクラスに属するか判別する

377デフォルトの名無しさん (アウアウウー Sa1b-e7Hj)2018/09/13(木) 00:17:45.77ID:pqzPAQ7ua
数字かそれ以外かで分類しようとしたら結局bは6と判定されるだろうけどね

378デフォルトの名無しさん (アウアウウー Sa1b-e7Hj)2018/09/13(木) 00:18:27.43ID:pqzPAQ7ua
正確には、6と扱われることでbは数字に分類されるだろうけどね

379363 (アウーイモ MM1b-P3CU)2018/09/13(木) 02:39:06.40ID:r4+4vjzBM
>>369
これがほぼ正解に近いですが、>>371にある通りやはり難しいのですかね。

>>376
数字は例えだったので・・
より実際に近い例えですと、一般物体を「犬、桜、車」の3クラスで認識し、
猫や梅や船のような他の物体なら、3クラスのどれでもないと返して欲しい、というような感じです。
未知の入力の中から、学習させた特定の対象だけを認識することは難しいのでしょうか・・
未知の入力パターンをリジェクトしてくれるような仕組みがないものかなぁと思い質問しました。

380デフォルトの名無しさん (ワッチョイ ff81-hTDA)2018/09/13(木) 07:39:33.36ID:qr0N7AS90
確率で判断してみるとか

381デフォルトの名無しさん (ササクッテロラ Sp8b-HwcP)2018/09/13(木) 08:04:53.73ID:iq9KCUrTp
>>379
それも対象となる幾つかとそれ以外に分類してみたらいいのでは?

それか6とbを判別するような判別を後からかけるとか

人間の感覚だと6とbの判別は上側のコーナーの位置と左側の上の交点の位置関係を見ているように思う

それを入力に追加するか学習で獲得させるか

382デフォルトの名無しさん (ササクッテロラ Sp8b-HwcP)2018/09/13(木) 08:07:38.47ID:iq9KCUrTp
>>377
それは教師信号とか学習方法とかでも違う結果になるんじゃないの?
厳しすぎて6を検出しなくなるかもしれないけど
それはそれで後から判別する用途に使えるかも知れない

383デフォルトの名無しさん (ササクッテロラ Sp8b-HwcP)2018/09/13(木) 08:10:20.78ID:iq9KCUrTp
>>361
一つとカウントするものの認識が違うようだ
ロジスティック回帰を特徴づけるパラメータを引数とする関数を一つと表現している
その関数を再起的に使うことを想定している

384デフォルトの名無しさん (ワッチョイ 9fe7-fFDB)2018/09/13(木) 08:52:40.16ID:7kEehjxd0
>>379
犬とそれ以外の2値分類器、桜とそれ以外の2値分類器、車とそれ以外の2値分類器を作って、1番スコアが高いものを答えとする。もし3つのスコア全てが一定の閾値以下であれば該当なしとする。うまくやれば1つのNNでできるかな?

385デフォルトの名無しさん (ワッチョイ d71e-cC+K)2018/09/13(木) 10:22:19.93ID:sZRV+2UZ0
>>379
未知と言っても実際はデータに偏りがあるから
その他クラスをつくって全部いれたら実用精度いくこともあるかも
ていうかこの程度のこと聞く前にやってみ

386デフォルトの名無しさん (アウーイモ MM1b-P3CU)2018/09/13(木) 11:25:57.39ID:u4Gmb1plM
>>381
初めから6とbが似ているという情報があればそれでもいいのですが・・
どんなものが(特徴量レベルで)6に似ているか分からない時にどうしたらいいでしょうか。
上の例だと、例えばアマゾンの奥地に私達が名前も知らないような犬に似た動物(人が見たら似ているけど犬ではないときちんと判別はできる)がいたとして、それがたまたま入力された時にちゃんとリジェクト出来ればと思うのですが。

>>384
2値分類器にすれば学習データ以外に対するリジェクト率は高くなるのですか?
少し検討してみます。

>>385
はい、もちろんそのつもりではあります。
ただ、あわよくばその他クラスの入力として有効だと知られているデータセットとかないかなと思いまして。
もっと確立された方法があるかと思ったのですが、
意外とあまり一般的な話ではないのかも知れないですね。

387デフォルトの名無しさん (アウーイモ MM1b-P3CU)2018/09/13(木) 11:28:11.38ID:u4Gmb1plM
>>386
訂正
×その他クラスの入力
○その他クラスの学習

388デフォルトの名無しさん (ワッチョイ bf67-pekm)2018/09/13(木) 12:02:33.48ID:LzYf4Nh90
シグモイド関数以外で判定すればいいんじゃね?具体的には知らんけど

389デフォルトの名無しさん (ササクッテロレ Sp8b-HwcP)2018/09/13(木) 13:46:19.92ID:qufj2uAPp
>>386
犬に似た動物か犬かは人間も見た目だけでは判別できないのでは?
DNAとかをみて分類するのであればそれを入力として判別するように学習するんだと思う

あくまでも既知の物に近い物の中でどれに近いかを判別するのだと思う

人間も例えば人の名前を聞いた時に
自分が知っている人の中から思い浮かべるはず

名前の文字列から同姓同名の知らない人かどうかは判別できない

390デフォルトの名無しさん (ササクッテロレ Sp8b-HwcP)2018/09/13(木) 13:52:05.24ID:qufj2uAPp
つまり似ているけど違うものを正しく判別出来ないときは
判別手法が適切でない可能性だけでなく
入力情報が不足している可能性も考える必要がある

当たり前のことだけど

逆に判別手法は同じでも入力情報を変える事で目的を達成できるかもしれない

391デフォルトの名無しさん (ワッチョイ d7f8-xwwK)2018/09/13(木) 13:52:25.76ID:xLrClwyc0
まず大前提として、バイアスが高いとかでなけりゃ
データ数が機械学習のすべて
DNNなら基本的にバイアスが高い状態は無視できるんだから
人が見て判別できる特徴を学習できるほどデータが足りないから誤判別するんだよ
そのデータ数を補い学習を促進させるのがGAN

アウーイモ MM1b-P3CUの問いに対する今最も適当な答えは、GANを組み込めって事だ

もう組み込んでるなら、CNNの前にattentionをぶっ込んで
attention順のtimestepやpositionを特徴に付加した上でCNNで畳み込むモデルを作ったりしろ
ここは先端研究分野だから論文読んで勉強して自分で試せとしか言えない

392デフォルトの名無しさん (ブーイモ MMbb-fFDB)2018/09/13(木) 13:56:03.92ID:RXUDxgvEM
>>386
もしかして、教師あり機械学習において、訓練データとして正例だけで(負例は与えずに)判定器を作れるか、という話なのかな?

もしそうであるなら、教師あり学習では出来ないと思うけど。

393デフォルトの名無しさん (ササクッテロレ Sp8b-HwcP)2018/09/13(木) 14:02:20.97ID:qufj2uAPp
6とbの例だと
数字を入力する欄に書かれている場合は6の可能性が高い
前後が数字だったらとか文脈情報を付加する事で
正解率を上げることはできると思う

人間も無意識に探索空間を限定していると思うよ
6はアラビア数字空間で見たら6だけど
ローマ数字空間でみたら該当なしが正解

394デフォルトの名無しさん (ブーイモ MMbb-fFDB)2018/09/13(木) 14:10:38.03ID:RXUDxgvEM
>>386
で、もし負例を集めるのが大変だという事であれば、学習済みの重みを使って転移学習できるかどうかを検討してみたらどうかな?画像系や言語系なら色々あると思うけど。

395デフォルトの名無しさん (ワッチョイ 17b3-wojP)2018/09/13(木) 15:36:31.62ID:D83GKx+w0
NVIDIA、AI学習モデルの推論処理に特化した「Tesla T4」
〜Pascal比で12倍の性能
https://pc.watch.impress.co.jp/docs/news/1142896.html

これって学習にも使えるの?
使えたとして個人で買える価格なのかな

396デフォルトの名無しさん (スッップ Sdbf-UrR/)2018/09/13(木) 15:51:01.39ID:JrlDULa9d
inferenceに特化してるとしか書いてないな
学習に使えたとしても大した性能でないんじゃないかな

397デフォルトの名無しさん (ワッチョイ b78a-+ow7)2018/09/13(木) 15:56:28.84ID:TesJPJdy0
パスカル比w

398デフォルトの名無しさん (ワントンキン MM7f-Aled)2018/09/13(木) 18:28:06.03ID:6sxcIAQxM
あらいぐまパスカル

399デフォルトの名無しさん (ワッチョイ 1fdc-cC+K)2018/09/13(木) 18:46:20.90ID:7wY9Zpwe0
GANで300x300ピクセル以上の自然なフルカラーRGBを24時間以内に生成するには、
幾らぐらいのGPUを買えば良いですか?

400デフォルトの名無しさん (アウアウアー Sa4f-65Zf)2018/09/13(木) 19:00:02.47ID:27QXB+7Da
300万円

401デフォルトの名無しさん (ワイーワ2 FFdf-rUn3)2018/09/13(木) 19:03:22.94ID:l9KSlvFSF
>>398
書こうと思って思い留まった

402デフォルトの名無しさん (アウアウウー Sa1b-wF5O)2018/09/13(木) 19:26:37.35ID:NNMq2uMVa
アライグマ12匹ぶんの性能!

403デフォルトの名無しさん (ワッチョイ 9f23-+ow7)2018/09/13(木) 19:58:05.51ID:TJ1+MKoj0
>>395
Teslaって時点で、個人で買うものじゃないだろ

404デフォルトの名無しさん (スップ Sd3f-bCjf)2018/09/13(木) 20:31:45.95ID:cCrIblsJd
>>395
FP16が速いようだけど、FP16で学習を安定化させるためには少し工夫が必要
できればおそらく学習も速くできる

405デフォルトの名無しさん (エムゾネ FFbf-bCjf)2018/09/13(木) 20:41:17.04ID:mPOxglR5F
>>404
去年のGTC JAPAN の資料
http://www.nvidia.com/content/apac/gtc/ja/pdf/2017/1055.pdf

論文も出てる

406デフォルトの名無しさん (スッップ Sdbf-UrR/)2018/09/13(木) 22:00:22.48ID:NBEHkjwvd
たぶんTITAN V買った方が幸せになれる
値段もそんなに変わらないだろうし

407デフォルトの名無しさん (ワッチョイ bf67-pekm)2018/09/13(木) 22:05:14.73ID:LzYf4Nh90
くそ〜おまいらの会話が分からないぜ。プレモル読んでくるノシ

408デフォルトの名無しさん (ササクッテロレ Sp8b-wojP)2018/09/14(金) 04:17:16.85ID:QQtWXLxFp
w>>407
そっちの方がわからんやんけ!w

409デフォルトの名無しさん (ササクッテロレ Sp8b-47pW)2018/09/14(金) 10:52:49.98ID:6Ydm1GfUp
参考書見ながら勉強してて、教師あり学習はなんとなくイメージ湧くんだけど教師なし学習の部分に入ってから急に難しくて理解しにくい…
主成分分析とか特にややこしいんだけどこういう技術はやっぱり頻繁に使われるのかな?

410デフォルトの名無しさん (ワッチョイ ff81-WjPf)2018/09/14(金) 10:59:03.56ID:36F6j8Uf0
やっぱり頻繁に使われる

411デフォルトの名無しさん (スプッッ Sd3f-OlI4)2018/09/14(金) 12:40:46.79ID:2A0ReTqdd
めちゃ使う

412デフォルトの名無しさん (スプッッ Sd3f-OlI4)2018/09/14(金) 12:41:56.63ID:2A0ReTqdd
一般企業で

413デフォルトの名無しさん (ワッチョイ d7f8-xwwK)2018/09/14(金) 14:37:37.68ID:tCA/H0VE0
PCAはできなきゃ可視化できねーから必須だろう

414デフォルトの名無しさん (ワッチョイ ff8a-+ow7)2018/09/14(金) 17:30:08.67ID:fNmUvAUj0
PCA会計はお手頃な価格

415デフォルトの名無しさん (ワッチョイ 77a5-47pW)2018/09/14(金) 22:05:30.13ID:exBB8l6d0
低学歴超初心者のゴミの俺が機械学習の勉強して5ヶ月
今更だけど統計の知識って避けて通れない気がしてきた
ここの人達はそういう知識も持ってるのかな…
機械学習でいっぱいいっぱいだけどやれるか俺…

416デフォルトの名無しさん (ワッチョイ 9f74-hiXp)2018/09/14(金) 22:36:41.30ID:qzMJcDz/0
>>415
無理だ、諦めろ。

417デフォルトの名無しさん (ワッチョイ 9f0e-okpm)2018/09/14(金) 23:11:14.48ID:570jbDxz0
機械学習に統計学の知識なんて必要ないよ
統計学は応用数学として高度な数学を必要とするが
機械学習に数学はいらない

418デフォルトの名無しさん (ワッチョイ 9780-9b2l)2018/09/14(金) 23:16:28.78ID:fXySkelb0
機械学習でビッグデータを扱うなら
最低でも正方行列でない行列を扱う対応分析や
疎な行列を計算機で扱うための知識が必要

419デフォルトの名無しさん (ワッチョイ 778a-OlI4)2018/09/14(金) 23:25:54.63ID:Br25m2430
PCAは機械学習の基礎技術と考えてよい

420デフォルトの名無しさん (ワッチョイ 778a-OlI4)2018/09/14(金) 23:29:42.46ID:Br25m2430
10〜1000個ぐらいのパラメータを2〜3軸ぐらいで見るためには必須です。

421デフォルトの名無しさん (ワッチョイ ffd3-13bR)2018/09/14(金) 23:33:40.19ID:Rk7AJQeX0
方法の一つとしてはそうだけど、基礎技術って言われると、んー?って思う。基礎的な技術だけど。

422デフォルトの名無しさん (ササクッテロレ Sp8b-47pW)2018/09/15(土) 00:34:19.96ID:ls8ZnII1p
>>409 です
PCAを使うのはあくまで可視化がメインなの?
特徴量抽出とかも書いてあってこんがらがってる
例えば20個の特徴量がある100点のデータがあって、それを2次元にしたい場合20個の特徴量からなる各データ(100点)から分散が大きい線?保持する
ってイメージなんだけど、2次元にした時点で色んなデータが削ぎ落とされて、20個の特徴量をぜんぶ引っくるめたデータの主成分だけが残って素の特徴量の概念は消えてると思うんだけどそこから特徴量を抽出って????ってなってる
日本語おかしくてごめん
自分の理解が完全に間違ってたり的外れな事言ってるのは十分理解してます…

423デフォルトの名無しさん (アウアウウー Sa1b-e7Hj)2018/09/15(土) 00:47:14.50ID:i7Q4C164a
統計検定2級レベルぐらいは機械学習に限らず解析とかするのに使えるから勉強しておくといい

424デフォルトの名無しさん (ワッチョイ 57eb-+ow7)2018/09/15(土) 01:49:47.53ID:81XKWb5c0
情報系の学科でプログラムはそこそこ勉強してて
機械学習ライブラリを全く使ったことないんですがちょっと勉強したくて
機械学習入門ライブラリって何がおすすめですか

うまくいくかどうかは別にして
株とかFSみたいな時系列グラフの予測したり
将棋や囲碁みたいなゲームAIを作ってみたいです

425デフォルトの名無しさん (スップ Sd3f-f/fR)2018/09/15(土) 01:59:22.37ID:yNUH5FEed
このスレは素人しかいないのかよw

426デフォルトの名無しさん (ワッチョイ 778a-OlI4)2018/09/15(土) 02:40:30.25ID:1BKmfL0E0
>>421
それはなぜそう思う?
PCAの結果って、数学的にニューラルネットのオートエンコーダの結果と一致する。
機械学習の本にそう書いてあるだろ?

427デフォルトの名無しさん (アウアウエー Sadf-LcbQ)2018/09/15(土) 03:55:20.45ID:jdmxJboBa
ニューラルネットから入門すればPCA に言及してるとは限らんだろ。そんなことも分からんのかw

428デフォルトの名無しさん (ワッチョイ d71e-TNGn)2018/09/15(土) 06:24:54.03ID:lguT9cyy0
測定を概論として知ってるといいよ
測定知らないと数理工学の理解が浅くなると思う

429デフォルトの名無しさん (ワッチョイ 57eb-+ow7)2018/09/15(土) 10:30:45.02ID:81XKWb5c0
測定ってはじめてきいたかも
回帰分析とか線形代数は最低限はわかると思います

430デフォルトの名無しさん (ワッチョイ 9711-okpm)2018/09/15(土) 12:29:12.79ID:oTIAmwpn0
>>428
測定ってmeasure(測度)のこと?

431デフォルトの名無しさん (ワッチョイ 57eb-+ow7)2018/09/15(土) 12:42:28.61ID:81XKWb5c0
たとえば時系列データの配列があったとして
なんてライブラリにどういう設定で実行すればいいかっていうのがわからない

どういうことをやるかっていうアルゴリズムの概論説明ばかりで
プログライミングの入門サイトみたいなのがあんまりなくて
何をインストールしてどうかけばいいかのプログラムサンプルを出してくれるサイトがあんまり見つからない

432デフォルトの名無しさん (ワッチョイ d71e-TNGn)2018/09/15(土) 12:43:32.90ID:lguT9cyy0
計測工学、誤差論とかだよ

433デフォルトの名無しさん (ワッチョイ bf67-pekm)2018/09/15(土) 13:20:09.75ID:tpcXcC8D0
>>431
分類ならIrisとかベンチマークで使われるデータセットがあるので具体的な使い方も分かると思う。
君のやりたい事が何のアルゴリズムで実現できるかは、自分で概論一通り勉強しないと決まらないと思うのよね。

434デフォルトの名無しさん (ワッチョイ 57eb-+ow7)2018/09/15(土) 14:02:42.28ID:81XKWb5c0
>>433
ありがとうございます

irisていうの使ってみます

機械学習って行列から結果ベクトルを生成する関数をつくるもので
教師データとして入力出力ペアを与えたらそれに近い答えを出す関数が作られて
未知のデータを流し込んでもそれなりに答えが出るみたいなイメージだったから
ライブラリでやることってたいした違いはないのかと思ってた

435CRFs (ワッチョイ 9780-9b2l)2018/09/15(土) 15:42:38.45ID:KIanXBkQ0
TensorFlow使ったほうがいい
くさるほどサンプルがある

436デフォルトの名無しさん (ワッチョイ 9780-9b2l)2018/09/15(土) 15:47:56.06ID:KIanXBkQ0
CRFもTensorFlow使えばきっと余裕でできるハズ

437デフォルトの名無しさん (ワッチョイ 57eb-+ow7)2018/09/15(土) 16:08:00.97ID:81XKWb5c0
>>433
Iris 機械学習 で検索してブログ2,3よんでみたけど
これってあやめの画像を認識するだけにしか使えないの?

画像認識はいまのとこ興味なくて

時系列データ予測(株とかよりはシーズン途中でのペナントレースの優勝予測とか)
ゲームAIとか
ツイッター上で知識獲得や自動応答
とかそのへんをやってみたいんだけど

>>435,436
TensorFlowはきいたことあるかも
次はそれ調べてみます
ありがとうございます

438デフォルトの名無しさん (ワッチョイ 9ffe-Crbm)2018/09/15(土) 16:10:06.41ID:+gRFgMvM0
自由度、将来性、普及率考えればtensorflow一択
日本語資料多めで取っつきやすいのはchainer
とりあえず動かしてみたいkeras
最近の論文の実装例多めでやや将来性ありpytorch

439デフォルトの名無しさん (ワッチョイ 9ffe-Crbm)2018/09/15(土) 16:12:35.37ID:+gRFgMvM0
>>437
やりたいことが明確なのはいいけどそこからアーキテクチャを勉強せずに実装に移るのは無理がある

440デフォルトの名無しさん (ワッチョイ 57eb-+ow7)2018/09/15(土) 16:14:19.13ID:81XKWb5c0
>>439
そうなんですね

まずはプログラムを動かしてから
パラメータをかえていって使い方を覚えるみたいな感じで勉強してきたので…
とりあえず動かしてみたかったんですけど

441デフォルトの名無しさん (ワッチョイ bf67-pekm)2018/09/15(土) 16:54:50.74ID:tpcXcC8D0
決まったレスポンスが期待出来るWebやOSのAPI呼んで行く従来のプログラミングとは違いますな

442デフォルトの名無しさん (アウアウエー Sadf-HwcP)2018/09/15(土) 16:57:36.10ID:VTJ0VoCAa
>>441
計算は確定的に同じ結果を得られるけど?

443デフォルトの名無しさん (ワッチョイ bf67-pekm)2018/09/15(土) 17:01:57.99ID:tpcXcC8D0
使うデータやモデル決めて実装するのも自分だもの。誰かが用意してくれた既存のAPI呼ぶプログラミングとは違うでしょ

444デフォルトの名無しさん (アウアウエー Sadf-HwcP)2018/09/15(土) 17:10:33.80ID:VTJ0VoCAa
>>443
既存のクラスとかライブラリを一切使わないってこと?

コレクションとか配列とかもいちいち自分で管理するの?
もし仮にそうだとしたらそれを扱うような機能や関数を自分で作ってそれを利用するけどね

そこら辺は既存のライブラリ使っても結果への影響はほとんど変わらない

445デフォルトの名無しさん (ワッチョイ 9780-9b2l)2018/09/15(土) 17:12:19.17ID:KIanXBkQ0
あいかわらず頭悪いは
モデルというのはドカタが使うモデルの話じゃないからな

446デフォルトの名無しさん (ワッチョイ 9780-9b2l)2018/09/15(土) 17:13:35.25ID:KIanXBkQ0
ココが低学歴知恵遅れの限界
うんよくわかる

447デフォルトの名無しさん (アウアウエー Sadf-HwcP)2018/09/15(土) 17:16:25.26ID:VTJ0VoCAa
>>445
既存のAPIってなんのことを言ってる?
従来のプログラムがその既存のAPIを使うだけで完成するっていう認識は正しいの?

448デフォルトの名無しさん (ワッチョイ bf67-pekm)2018/09/15(土) 17:16:46.36ID:tpcXcC8D0
>>444
ライブラリを使っても自分の実装範囲が広いから、簡単なチュートリアル中々ないよね。って言いたかったんだ

449デフォルトの名無しさん (ワッチョイ bf67-pekm)2018/09/15(土) 17:19:28.82ID:tpcXcC8D0
これでも何か行ってくるようなら446の人におまかせするわ

450デフォルトの名無しさん (アウアウエー Sadf-HwcP)2018/09/15(土) 17:27:07.77ID:VTJ0VoCAa
試行錯誤が必要って意味なら
そんなの当たり前の事じゃね

テレビのシステムとか
携帯電話の通信システムとか作るのに
試行錯誤が必要なかったとでも?

自動車や飛行機でも同様

451デフォルトの名無しさん (ワッチョイ 9780-9b2l)2018/09/15(土) 17:30:38.30ID:KIanXBkQ0
数理モデルの話だからな

コーディングの話なんかココでは一切関係ない

まずやりたいことを
まずどういった数理モデルで実現するかという話になる

数理モデルでの実現方法をきめたら
次は、なにもわかってない低学歴底辺ドカタどもが作業するときに
どういった実装モデルにすれば一番コストを抑えることができるか
という話だからな

ぜんぜんかみあってないワケ

わかった?

452デフォルトの名無しさん (ワッチョイ 9780-9b2l)2018/09/15(土) 17:37:18.38ID:KIanXBkQ0
で、TensorFlowはその数理モデルを
組み立てるためのライブラリが充実している

当然、数理モデルがわかってないと
そんなライブラリは使いこなすことはできない

453デフォルトの名無しさん (アウアウエー Sadf-HwcP)2018/09/15(土) 17:45:46.95ID:VTJ0VoCAa
>>451

数理モデルの所が物理モデルだったりするけど
やってることは同じようなものだ

それは普通に行われて来たこと

454デフォルトの名無しさん (アウアウエー Sadf-HwcP)2018/09/15(土) 17:52:05.55ID:VTJ0VoCAa
>>451
で結局何を言いたいかって事だけど
期待した結果を得られなくて大変だ
と言いたいの?

まぁガンバレ

455デフォルトの名無しさん (ワッチョイ 9780-9b2l)2018/09/15(土) 17:53:12.18ID:KIanXBkQ0
物理はちゃんと現在もっとも有力な仮説があるからな
その仮説にあてこむだけですむ

検証可能で検証可されてるサイエンスの成果をそのままテクノロジーに反映する土台ができあがってる
そういった成果は、バカでもチョンでも利用することができる

AIにはそういうもんがない
形而上学の世界だからな

低学歴知恵遅れにはこの意味がわかることはないと思うわ
車程度ならニュートン力学で十分だしな

456デフォルトの名無しさん (アウアウエー Sadf-HwcP)2018/09/15(土) 18:01:04.76ID:RyZhDvOSa
>>455
それが実現できないことに対する言分かな

他の組織で実現できたら
その時はどんな言分を考えるのかな

まぁ大変だろうけどガンバレ

457デフォルトの名無しさん (ワッチョイ bf67-pekm)2018/09/15(土) 18:03:52.60ID:tpcXcC8D0
tfってそういうものなのね

458デフォルトの名無しさん (ワッチョイ 9780-9b2l)2018/09/15(土) 18:04:21.99ID:KIanXBkQ0
このスレの低学歴知恵遅れたちは
まず数学は文系であることを理解することが先

459デフォルトの名無しさん (ワッチョイ 37c3-okpm)2018/09/15(土) 18:28:11.11ID:aDVtzTM20
数学、プログラミングは論理学なのか?
少なくとも数学はそうかもね。プログラミングはハードの知識も必要だから工学の要素があるけど

460デフォルトの名無しさん (ワイーワ2 FFdf-cC+K)2018/09/15(土) 18:35:36.27ID:AVfR6YnTF
スレチ

461デフォルトの名無しさん (ワッチョイ 57eb-+ow7)2018/09/15(土) 18:56:43.43ID:81XKWb5c0
プログラム板なのにプログラムの話NGだったんですね
失礼しました

462デフォルトの名無しさん (アウアウエー Sadf-G9Ec)2018/09/15(土) 20:49:01.87ID:/sR8KW2Oa
捨て台詞を吐いて、その程度で諦めるていどのモノなのか?

463デフォルトの名無しさん (ワッチョイ 57eb-+ow7)2018/09/15(土) 21:41:23.44ID:81XKWb5c0
捨て台詞のつもりはないんですが…
自分のレスがきっかけでスレの流れがよくなかったのでやめたほうがいいのかなと思って
なんかすごく感じ悪く受け取られちゃってますね
ほんとに申し訳ないです

TensorFlowを教えてもらったので使い方ぐらいは自分で調べてみます
ほんとは使ってる人にききながらやったほうが絶対早いと思うんですが…

464デフォルトの名無しさん (ワッチョイ 1fdc-cC+K)2018/09/15(土) 21:41:48.76ID:EPdHYaRJ0
あほでも使えるAIの学習済みライブラリが、すぐに出てくるかと思ってたけど、出ないな

実用に達していないレベルなら有るけど
https://dev.smt.docomo.ne.jp/?p=docs.api.index

465デフォルトの名無しさん (ワッチョイ ff81-hTDA)2018/09/15(土) 21:46:41.15ID:xey2DpHS0
>>463
TensorFlowのラッパーのKerasがやさしい。
サンプルは幾らでもある。
まずMNISTでもやってみなさい。

466デフォルトの名無しさん (ワッチョイ ff8a-+ow7)2018/09/16(日) 08:48:23.30ID:MIKVdUGB0
いい夢見ろよ(笑)

467デフォルトの名無しさん (ワッチョイ 9f23-+ow7)2018/09/16(日) 09:32:05.41ID:vTRQPpRB0
株の予想とかペナントレースの予想とか、AIの使いみちが全然わかってないなw

468デフォルトの名無しさん (ワッチョイ bf67-pekm)2018/09/16(日) 09:58:15.93ID:pVLTHjJp0
ユー、タイムマシン作っちゃいなよ

469デフォルトの名無しさん (ワッチョイ 37c3-okpm)2018/09/16(日) 10:08:57.97ID:DPDUfIAP0
>>467
じゃあAIの使い道って何?

470デフォルトの名無しさん (ワントンキン MM7f-ahc+)2018/09/16(日) 10:24:42.93ID:J7jkqE/NM
クラスタリングとか

471デフォルトの名無しさん (ワッチョイ 57f2-okpm)2018/09/16(日) 10:31:26.53ID:yGlb1wug0
AIじゃなくて人間の知能だって未来の予測は難しいわw

472デフォルトの名無しさん (ワッチョイ bf67-pekm)2018/09/16(日) 11:27:04.34ID:pVLTHjJp0
夏休み終わったのに怒涛の教えて君爆誕

473デフォルトの名無しさん (ブーイモ MMbf-hiXp)2018/09/16(日) 14:08:29.73ID:Xvs/hqWSM
その教えて君を追い払う役目の自称高学歴有識者のお前らのコメントも、いかにもブラックボックスから出た答えを鵜呑みにしてそうな抽象的なものばかり。
類は友を呼ぶ。

474デフォルトの名無しさん (スップ Sdbf-f/fR)2018/09/16(日) 14:27:29.53ID:EtoE+Y4id
>>473
では正解サンプルとしてお手本を示してください。

475デフォルトの名無しさん (アウアウエー Sadf-LcbQ)2018/09/16(日) 18:04:12.36ID:xlirAkV8a
>>473
具体的なコメントまだぁ?

476デフォルトの名無しさん (ブーイモ MMbb-ahc+)2018/09/16(日) 21:36:06.16ID:h2MQFGAYM
>>473
具体的で独自解釈な論文まだぁ

477デフォルトの名無しさん (アウアウウー Sa1b-AvBu)2018/09/17(月) 01:18:13.47ID:B9Ff9U8Oa
スロベニア製のオレンジ使ってる人いる?

478デフォルトの名無しさん (ワッチョイ 77a5-47pW)2018/09/17(月) 13:40:23.85ID:wcqhWGbh0
今日は統計解析の勉強する

479デフォルトの名無しさん (ワッチョイ 578a-+ow7)2018/09/17(月) 15:07:41.13ID:r0SMjS9V0
明日はどっちだ!

480デフォルトの名無しさん (ワッチョイ ff8a-mEkm)2018/09/18(火) 20:40:14.73ID:k7v+ymOu0
ubuntuにjupyterをインストールしようとしたけど、これもう無理だな
英語コミュニティでも、ちゃんとは内容を理解できないけど、みんなで無理だのなんだの言ってる感じ
pythonのパッケージを管理するためだけに
linuxについてをここ二週間ずっと勉強してきたのに初手でつまずいてしまった

481デフォルトの名無しさん (ワッチョイ ff8a-mEkm)2018/09/18(火) 20:42:18.85ID:k7v+ymOu0
あっ、condaを使ってしまえば話は別ね

482デフォルトの名無しさん (ワッチョイ 37c3-okpm)2018/09/18(火) 20:49:20.88ID:S3XkALSh0
どういうこと?Jupyter Notebookがブラウザで立ち上がるだけじゃダメなの?

483デフォルトの名無しさん (ワッチョイ 579b-lJg0)2018/09/18(火) 20:52:03.60ID:Jydth2ea0
時系列解析の自己回帰(AR)モデルについて教えてください
「AR(1) = Rt = μ + Φ1Rt-1 + εt」という式で
次数1の時「Rt: 今回の値」は「Rt-1: 1つ前の値」から推定される
という式ですが、この「1つ前の値」は実測値ですか?
それとも「Rt-2」を使って算出された予測値を説明変数と
するのでしょうか?
前者が正しいなら1つ前の実測値がないと予測できない事になりますが、
後者が正しいなら何時点か前の初期値1つだけで何時点も後の
値を予測可能だと思うんですが、どちらでしょうか?

484デフォルトの名無しさん (ブーイモ MM9b-e9IP)2018/09/18(火) 21:40:22.66ID:5LJPbrObM
>>487
何を分析するかに依るけど
一般的には実測値だと思う

485デフォルトの名無しさん (ワッチョイ 579b-lJg0)2018/09/18(火) 21:54:26.20ID:Jydth2ea0
>>484
ありがとう。株価だよ。
すげえ悩んでたから助かったよ。

486デフォルトの名無しさん (ワッチョイ 579b-lJg0)2018/09/18(火) 21:56:59.45ID:Jydth2ea0
>>484
ごめん、正確には収益率。

487デフォルトの名無しさん (ワッチョイ 9776-/EHZ)2018/09/18(火) 21:58:14.97ID:3M7OTvKW0
>>482
せっかくのLINUX環境なのに、CLIで起動できない実行環境なんて悲しすぎる

なんて思ったけど、jupyterlabなら簡単にインストールできた
コレ、次世代すぎて使いこなせる気がしないけど
今ぱっと動かした感じだとpycharmの更に上を行くほど更に凄いな
てか今年の春にjupyter notebookの使用方法をマスターしたのに
もう上位互換が出るのかよ。やってらんねーよ

488デフォルトの名無しさん (ワッチョイ 57eb-+ow7)2018/09/18(火) 22:20:56.79ID:yX9O6HZv0
株価って機械学習で予測できるの?
こないだ質問したら人間ができないことはできないっていってなかった?

489デフォルトの名無しさん (ワッチョイ 9f20-xwwK)2018/09/19(水) 00:03:09.71ID:qfGEDKPk0
単純なデイトレゲームと仮定した場合

株:できる、しかし実際には法律でアウトになるのでできない
見せ板を多用した相場誘導や短時間での注文&キャンセル処理でAPIに負荷かけた時点で
法律的にアウト

仮想通貨:できる
株ではできない見せ板を多用した相場誘導が基本的に無制限で法律で取り締まられてもいない
取引所に負荷かけすぎて怒られたりBANされることは多々あり
具体的には、板を出しているのが人間かそうでないかを見分けることで
肉入りから証拠金を巻き上げるような動きが可能になる

長期的嫌気判断として見た場合

株:できる
実際に行われているのは上場企業の役員のTwitterチェックなど
マイナスやトラブルを引き起こすような発言があったとシステムが判断した場合
(要するに異常検知の一種で炎上を検知している)
AIによって一斉に売られたりする
よくマイナス異常検知のターゲットになってるのはイーロン・マスクと関連企業
マイナスの異常でなくプラスの異常検知でも同じ
ニュースに対する反応なども見る

仮想通貨:できる
しかも風説の流布の取り締まりなどが行われていない為やりたい放題できる
大手仮想通貨メディアを裏で操る人々は、この手の手法で荒稼ぎしているだろう
直近で言えば、ゴールドマン・サックスの仮想通貨トレードデスク開設中止報道etc...


まぁちょっと勉強すれば誰でも思いつくよな
仮想通貨はこんな各国の法整備状況で、ビットコインETF承認なんてされたらある意味祭り

490デフォルトの名無しさん (ワッチョイ ff81-WjPf)2018/09/19(水) 00:12:36.78ID:2H97zkt+0
取引方法がはじめからわかってたら、高速なシステムトレードやるだけだろ。
株価じたいではなく、ニュースからデータ仕入れて、何に反応するかの部分のAI化ってことか。

491デフォルトの名無しさん (ワッチョイ 9f23-+ow7)2018/09/19(水) 07:51:57.58ID:Y3nn/dRn0
見せ板してる時点で、予想できてないじゃんw

492デフォルトの名無しさん (アウアウエー Sadf-HwcP)2018/09/19(水) 08:01:29.20ID:K7UZA9LYa
予想の値を出すことは可能
だけどそれで目標の利益を得られるかは別じゃね?
一度上手く利益を得られたとしても
トータルでは違う結果になるかもしれない

493デフォルトの名無しさん (ワッチョイ 1fdc-cC+K)2018/09/19(水) 11:10:21.21ID:412dQebS0
AI×株の話題は荒れるから、野菜の分類でもやってろ
https://tech.nikkeibp.co.jp/it/atclact/active/17/070300314/070400002/?n_cid=nbpnxta_mled_act

494デフォルトの名無しさん (ワッチョイ 578a-+ow7)2018/09/19(水) 11:32:57.12ID:lkpniOf60
ステマ

495デフォルトの名無しさん (ワッチョイ 9f23-+ow7)2018/09/19(水) 12:36:23.68ID:Y3nn/dRn0
判別難し過ぎワロタ
【統計分析】機械学習・データマイニング20 	YouTube動画>2本 ->画像>16枚

496デフォルトの名無しさん (ワッチョイ 9f20-xwwK)2018/09/19(水) 12:56:40.73ID:qfGEDKPk0
荒れるっていうか実際やってる人達が他のやつもみんなやりだすと稼げないからな
仮想通貨のデイトレゲーは大資本ないと厳しい(ただし、手数料フリーの取引所は例外)
深層異常検知の自動取引なんてすごいお手軽にリスクを最小化できる

まぁこの程度はネタバレにすらならん
大手はみんなやってることだろ

497デフォルトの名無しさん (ワッチョイ 9f23-okpm)2018/09/19(水) 13:07:48.03ID:Y3nn/dRn0
震災後は地震になると猛烈に先物を売る地震アルゴとかあったけど、
全戦全敗で撤退した

498デフォルトの名無しさん (ワッチョイ d71e-0k7s)2018/09/19(水) 13:36:19.39ID:0YSgxbfH0
>深層異常検知の自動取引なんてすごいお手軽にリスクを最小化できる
それってどうやって性能評価してんの?

499デフォルトの名無しさん (ササクッテロ Sp8b-47pW)2018/09/19(水) 14:27:41.75ID:cOJ83uNip
今日休みだから勉強してたけど5時間で参考書4ページくらいしか進んでない…
時間かけたからって理解したわけじゃないし…
ビニングとか交互作用とか多項式とか概要はまだしもなんでこれをやる必要があるのか全然分からん

500デフォルトの名無しさん (ワッチョイ 7708-ViI+)2018/09/19(水) 17:46:00.61ID:kf9wev3s0
俺はもう一冊読破したよ
コツは実践しながら読むこと

501デフォルトの名無しさん (ワッチョイ bf1e-+ow7)2018/09/19(水) 18:05:00.19ID:vTJ3S9KO0
>>489
でも野村證券とか大手はAPIに負荷かけまくりじゃん?
おかしいよね?

見せ板も出しまくりだよね?

502デフォルトの名無しさん (ワッチョイ ff8a-mEkm)2018/09/19(水) 18:32:49.69ID:rc2jjf3P0
JUPYTERLAB、まじで統合開発環境になっていやがるな
機能が一気に増えたけど、余計なことまで出来るようになるのは吉か凶か

DSモドキ、機械学習エンジニア(笑)たちの御用達ツールって感じじゃなくなったな
本当にIDEだ。pythonを使って、チームで本格的な開発を行う人たちの強力なプラットホームだわ

503デフォルトの名無しさん (アウアウウー Sa1b-e7Hj)2018/09/19(水) 19:09:37.45ID:uTNvKAU6a
jupyterlabはvim拡張がnotebookと比べて貧弱だったから使ってなかったけど今は進化したかな?

504デフォルトの名無しさん (ササクッテロ Sp8b-47pW)2018/09/19(水) 19:48:23.18ID:cOJ83uNip
>>500
一冊終えるのに何ヶ月もかかるわ
だからって完全に理解してるわけじゃないし時間かかった分どんどん忘れていくし…
実際コード書きながらやるんだけど参考書の説明が分からないと先に進めず考えこむんだけど分からなくても先にとりあえず進んだ方が良いのかなぁ

505デフォルトの名無しさん (ブーイモ MMbb-ck2F)2018/09/19(水) 20:10:53.74ID:aiIpKBDGM
>>495
よーし、裏山に生えてたニラでも食うかー

506デフォルトの名無しさん (ワッチョイ 7f5a-NMPr)2018/09/19(水) 21:33:48.11ID:kwGXfZ/C0
>>495
実物見りゃすぐ分かるよ

507デフォルトの名無しさん (ワッチョイ 9776-mEkm)2018/09/19(水) 21:40:24.46ID:GiAtsVA80
>>504
いちいち立ち止まって考えるのも、無理やり先に進むのも、どっちも正解だろ
どういうやり方をしてもすぐに忘れるんだから
ただ、表面的な知識を忘れても、なにか身についているような状態にするのが理想なんじゃないかなとは思う

数学、統計学、機械学習の理論、情報科学の基本的な考え方
プログラマー的な物作りの直感や、WEB系なら文系的な能力などなど
そういうものが最も大切で、ライブラリやプログラムの文法、ツールの使い方なんかは
適当にそのつどそのつどで調べながら身につければOKなんじゃないか

最近、ツール関連は流行り廃りが激しいから、使い方をいっぱんに覚えるより
使い方がわからないツールを、英語ドキュメントを読みながら、なんとなく動かして
作業をちんたらちんたら進められる能力のほうが貴重な気がしてきた

508デフォルトの名無しさん (ワッチョイ bf9f-BPXD)2018/09/19(水) 23:21:12.82ID:Ev5NTVKN0
>>499
細かく読み進める前に、学ぶ意義付けを見直した方がいいんじゃないか。
入門書であれば章の始めなどに「何のためにこの章を学習するか」という意義付けが示されるはずだし、
示されないのであればあまり入門者向けの本ではないからもっと簡単な本から学んだ方がいい

509デフォルトの名無しさん (アウアウカー Sae9-Sybn)2018/09/20(木) 10:23:59.56ID:gnTuzcyga
TF2、高レベルに進化するんだな
数年後にkeras消えてそう

https://www.hellocybernetics.tech/entry/2018/09/20/001259

510デフォルトの名無しさん (アウアウウー Sa25-V+nN)2018/09/20(木) 11:30:12.09ID:M2lBgQHaa
>>509
tensorflowとpytorchか?新しいの出てくるのか?

511デフォルトの名無しさん (ワッチョイ f11e-Y82R)2018/09/20(木) 12:23:04.74ID:o2DcsKoW0
開発元同じだから

512デフォルトの名無しさん (ワッチョイ 8223-coYL)2018/09/20(木) 12:23:46.76ID:zlEb4gGt0
覚えるの大変だから、これ以上新しいものは出さないでほしい

513デフォルトの名無しさん (ワイーワ2 FF8a-wH+P)2018/09/20(木) 12:30:15.73ID:7WHuQIEOF
おまいの脳は退化してる

514デフォルトの名無しさん (ワッチョイ 618a-tHrl)2018/09/20(木) 14:26:41.94ID:X9J+trAU0
脳が学習を拒否してるだけだろ

515デフォルトの名無しさん (ワッチョイ 65a5-tCrn)2018/09/20(木) 20:04:23.98ID:5NSt/ZF+0
その機械学習の勉強意味あるんですか?
何か後に繋がるの?って言われた

そんなこと俺が聞きてぇよ!
何も知らない分からないとこから始めて勉強方法だって手探りだしやってる内容があってるか分からんし内容だって難しいしイメージ湧かないしで本人が一番不安だわ(;ω;)
なんだよちくしょう…(;ω;)

516デフォルトの名無しさん (スッップ Sd62-EYNp)2018/09/20(木) 21:53:45.68ID:lp9E2ptbd
>>515
向いてない、無理してやることない

517デフォルトの名無しさん (ワッチョイ 8667-SLjp)2018/09/20(木) 23:50:09.61ID:sVm7S3su0
我々の代わりにニューロンが学習してくれるのさ

518デフォルトの名無しさん (アウアウエー Sa4a-gH+x)2018/09/21(金) 17:00:40.03ID:2t2lIB8da
>>509
消えるも何も TF に統合されて普通に使われてるんだが…

519デフォルトの名無しさん (ワッチョイ 8223-tHrl)2018/09/21(金) 17:58:59.29ID:MMpIEkeV0
俺にも機械学習を学んだ後のゴールが見えない

520デフォルトの名無しさん (アウアウカー Sae9-Bug1)2018/09/21(金) 18:09:41.64ID:KMw7nMvLa
目的がないのに無理して学んでもしょうがないんじゃない?
受託分析の会社に就職したいとかこういうプロダクト作りたいとか、何かしらゴールを設定しないと学んだ事も役に立たないと思う。

521デフォルトの名無しさん (アウアウエー Sa4a-gH+x)2018/09/21(金) 18:27:13.56ID:2t2lIB8da
同意。もう素人がちょっと勉強してどうにかなるレベルじゃないし

522デフォルトの名無しさん (ワッチョイ 8667-SLjp)2018/09/21(金) 19:46:22.75ID:egkcJrwz0
仕事に付けばゴールが設定されるんでは

523デフォルトの名無しさん (ワッチョイ be5a-Zmv5)2018/09/21(金) 20:31:40.71ID:y+ZygFeU0
何となく流行ってるからオライリーのディープラーニング本買ったけど、
私立文系非職業プログラマが趣味で手を出せる感じじゃない?

524デフォルトの名無しさん (スッップ Sd62-EYNp)2018/09/21(金) 20:34:15.20ID:Hsxyb3Kxd
趣味でやるならいいんじゃないの。ゆっくり基礎から楽しめばいい

525デフォルトの名無しさん (ササクッテロ Sp71-/e2F)2018/09/21(金) 20:36:04.02ID:LuvXm+Whp
deepで回帰やってる人ほとんど殆ど見ないし明らかに回帰問題な物もクラス分類に置き換えてやってるの見る限り回帰よりも分類の方がハードル低いんですかね

526デフォルトの名無しさん (ワッチョイ f11e-Y82R)2018/09/21(金) 20:36:50.09ID:81NIT4ig0
当たり前だろ
計算コストも高い

527デフォルトの名無しさん (ワッチョイ 8223-tHrl)2018/09/21(金) 22:11:23.45ID:MMpIEkeV0
>>523
いや、理論が分からないんじゃなくて、
膨大なデータと強力な計算装置がないと、たいした物は作れない。

つまり、個人がチマチマと何かを作る用途には向かない

528デフォルトの名無しさん (アウアウカー Sae9-Bug1)2018/09/22(土) 00:13:45.94ID:ZacBjrxHa
個人でもアイデア次第で面白いもの作れると思うけどな。
計算資源は趣味でやるレベルならクラウドサービス借りればいいし、
画像分類系ならImageNetのファインチューニングである程度は精度上げられる。
ラーメン二郎識別の人も、ベースの画像は自作のクローラーで集めた3万枚くらいでデータ拡張やGANで増やして精度を上げたと聞く。

サービスとして提供するレベルを目指すなら企業の力がいるけど、それは機械学習に限ったことではないし、
個人で楽しむ環境は自力で十分に用意できると思う。

529デフォルトの名無しさん (アウアウウー Sa25-wHMa)2018/09/22(土) 00:38:25.15ID:l1Z1a/8Ia
AzureとかGCPとか使いたいけど無料でやりたくてもカード登録必須で無料枠越えたら勝手に課金されるのが怖い
勝手に課金せず無料枠越えたら問答無用でストップしてくれればいいのに

530デフォルトの名無しさん (アウアウエー Sa4a-nL3Z)2018/09/22(土) 00:40:04.67ID:K4iJB0qOa
教師なしでできる事やればいいのに
強化学習とかさ

531デフォルトの名無しさん (ワッチョイ f11e-Y82R)2018/09/22(土) 00:50:07.29ID:uHslz/QL0
できるかよ
どれだけ借りるつもりだ

532デフォルトの名無しさん (ワッチョイ 069f-Bug1)2018/09/22(土) 00:51:12.19ID:7+L6lvEZ0
>>529
GCPは無課金枠使い切ったらクレカ開始するまでワンステップあるよ。
使い切った時点でサービスが一度止まるはず

533デフォルトの名無しさん (ワッチョイ 6db6-p9eM)2018/09/22(土) 02:23:42.00ID:MAFBmZ+e0
ヒカキンの年収が10億超え!?明石家さんま・坂上忍も驚愕の総資産とは??
https://logtube.jp/variety/28439
HIKAKIN(ヒカキン)の年収が14億円!?トップYouTuberになるまでの道のりは?
https://youtuberhyouron.com/hikakinnensyu/
なぜか観てしまう!!サバイバル系youtuberまとめ
http://tokyohitori.hatenablog.com/entry/2016/10/01/102830
あのPewDiePieがついに、初心YouTuber向けに「視聴回数」「チャンネル登録者数」を増やすコツを公開!
http://naototube.com/2017/08/14/for-new-youtubers/
27歳で年収8億円 女性ユーチューバー「リリー・シン」の生き方
https://headlines.yahoo.co.jp/article?a=20170802-00017174-forbes-bus_all
1年で何十億円も稼ぐ高収入ユーチューバー世界ランキングトップ10
https://gigazine.net/news/20151016-highest-paid-youtuber-2015/
おもちゃのレビューで年間12億円! 今、話題のYouTuberは6歳の男の子
https://www.businessinsider.jp/post-108355
彼女はいかにして750万人のファンがいるYouTubeスターとなったのか?
https://www.businessinsider.jp/post-242
1億円稼ぐ9歳のYouTuberがすごすぎる……アメリカで話題のEvanTubeHD
https://weekly.ascii.jp/elem/000/000/305/305548/
専業YouTuberがYouTubeでの稼ぎ方具体的に教えます。ネタ切れしない方法は〇〇するだけ。


YouTubeで稼げるジャンルは〇〇動画です。YouTube講座


534デフォルトの名無しさん (ワッチョイ 8667-SLjp)2018/09/22(土) 10:37:32.71ID:IfrUT1bl0
GTX1080 一枚くらいなら個人買うけど、何すべえ

535デフォルトの名無しさん (ワッチョイ c980-yqSl)2018/09/22(土) 11:17:23.77ID:PGp2AKzL0
低学歴知恵遅れが独学で機械学習を学習しても
一向に学習効果があがらない
このスレみてればよくわかるだろ

それと同じだからな

まずバカは勉強のしかたや努力のしかたが分かってない
だからバカはバカのまま

さらにバカはバカの自覚がない
だからバカはバカのまま

もうカンペキなレス

536デフォルトの名無しさん (アウアウエー Sa4a-nL3Z)2018/09/22(土) 11:25:37.78ID:K4iJB0qOa
流行りのディープラーニングやりたいのはわかるけどさ
データ集めるのもチューニングするのも難しいから、初心者が自前のデータでやるのは難しいと思うよ

まずはSVMとか決定木みたいな古典的な手法から入るべき
データが少なくてもそこそこ上手くいくから

537デフォルトの名無しさん (アウアウエー Sa4a-nL3Z)2018/09/22(土) 11:26:26.13ID:K4iJB0qOa
ディープラーニングだけが機械学習じゃないよ

538デフォルトの名無しさん (ワッチョイ 8667-SLjp)2018/09/22(土) 11:28:18.51ID:IfrUT1bl0
自分はそのつもりっす。方式による計算量の多寡の検討もつかないのでまずは一通り遊んでみる

539デフォルトの名無しさん (アウアウエー Sa4a-gH+x)2018/09/22(土) 13:26:53.70ID:fcKY0ssXa
このスレってnlp ネタ殆ど出ないよな。あんまやってる人いないのかな。
allennlp 使いたいけど評判どう? 知ってたら教えて

540デフォルトの名無しさん (スッップ Sd62-EYNp)2018/09/22(土) 13:47:27.41ID:+pucmWord
>>539
このスレは超初心者救済スレだから。LSTMもattentionもまったく出てこないw
AllenNLPは良くできてるけど少しハードル高いかも、仕様の把握が面倒

541デフォルトの名無しさん (ワイーワ2 FF8a-wH+P)2018/09/22(土) 13:48:31.14ID:xOVRbYWfF
nipless

542デフォルトの名無しさん (ワッチョイ 8667-SLjp)2018/09/22(土) 13:51:54.80ID:IfrUT1bl0
ダジャレスレ

543デフォルトの名無しさん (アウアウエー Sa4a-gH+x)2018/09/22(土) 13:56:57.15ID:fcKY0ssXa
>>540
サンクス、そう言えば rnn の話し見ませんね。
やっぱドキュメント読まないとダメか… pytorchもわからんとダメ?

544デフォルトの名無しさん (ワッチョイ 6220-Mczu)2018/09/22(土) 17:59:22.10ID:QjN0TaMB0
ここに書いても無駄だろうけど
Attentionした時間順を特徴に埋め込んでから
CNNでその時間を考慮しつつ、初期層含め各層の時間情報を参照しながら畳み込む
ってモデルさっさとでないかなぁ
sota必至だから早く論文出てほしい

脳はやってる
https://www.eurekalert.org/pub_releases/2018-08/nuos-hyb082818.php

でも既存の機械学習では、初期の特徴に時間を付与することはほとんどやってない
RNNやLSTMが上手くいってないのは、初期から時間情報を連続的に把握して時間変化率を学習できないからだよ
いくら微分しても変化率とっても、初期状態からの時間情報を連続的に把握できないから学習できてない

一方、音声を特徴とする場合、ほとんどシークタイムが特徴に自動的に含まれるから
処理はクソ重くなるけど、高品質な結果が得られる

人間に置き換えても一緒
感覚器官は注意と畳み込みを同時に行いながら、それらの順でシーケンスを伝えて
脳はこの順番を記憶している

545デフォルトの名無しさん (ワッチョイ 2e80-OXKd)2018/09/22(土) 18:13:18.49ID:tW/Yy4gZ0
機械学習もいいが、センサーにはかなわん
ブラックボックスの中のものを重さや振った時の音で予測する・・・なんて回りくどいぜ
X線撮影で確認しろ
未来予測ならワームホール望遠鏡だ!

546デフォルトの名無しさん (アウアウエー Sa4a-gH+x)2018/09/22(土) 19:40:46.36ID:fcKY0ssXa
長崎は勝たないと脱落するぞ

547デフォルトの名無しさん (アウアウエー Sa4a-gH+x)2018/09/22(土) 19:41:06.05ID:fcKY0ssXa
ごめん、誤爆 orz

548デフォルトの名無しさん (スッップ Sd62-EYNp)2018/09/22(土) 21:29:54.41ID:2qFIpkAdd
>>543
ドキュメントをなぞるだけなら不要

549デフォルトの名無しさん (ワッチョイ 6976-uN3A)2018/09/22(土) 22:34:55.25ID:z+m4dANi0
>>503
デフォルト設定は貧弱
カスタマイズありきで拡張性は高いんだけど、使いこなせないなら、旧版をずっと使い続けた方がよさそう
こんなツールの設定コマンドを覚える暇があったら他にやらなければならないこと五万とあるだろ
俺は覚えるつもりだけど・・・

550デフォルトの名無しさん (ワッチョイ 65a5-tCrn)2018/09/23(日) 12:44:56.23ID:bLvK9Iso0
俺みたいな雑魚はまずnumpyとpandasとmatplotlibを使いこなせるように頑張るとこからだな

551デフォルトの名無しさん (アウアウエー Sa4a-gH+x)2018/09/23(日) 15:05:02.43ID:/sY9qa+Ta
>>550
的を得てるけど、深層学習が目的なら keras のサンプルでも動かすとモチベーションが保ちやすい

>>548
了解。ボチボチ覚えるつもりではいます

552デフォルトの名無しさん (ワッチョイ f11e-Y82R)2018/09/24(月) 02:46:29.51ID:igBDxXXr0
>>544
カプセルネットワークみたいにベクトルに拡張して空間情報とするのは?

553デフォルトの名無しさん (ワッチョイ 69c3-onpN)2018/09/24(月) 04:22:26.78ID:6dcTB1Rg0
>>544
マルコフ連鎖をモデルの中に組み込めば良いんじゃ無い?
でも微分で消えてしまうのかな.

554デフォルトの名無しさん (アウアウウー Sa25-V+nN)2018/09/24(月) 09:09:25.13ID:ekT6BbXIa
>>551
chainerのサンプルコードの方が楽。

555デフォルトの名無しさん (スッップ Sd62-EYNp)2018/09/24(月) 12:16:47.58ID:lNNMZfDzd
>>554
まだ使ってる人いるのか

556デフォルトの名無しさん (アウアウエー Sa4a-gH+x)2018/09/24(月) 12:26:29.26ID:VhNQr7Aka
>>554
オワコンの名前をあげていちいち絡むな
https://trends.google.co.jp/trends/explore?cat=5&q=tensorflow,chainer

557デフォルトの名無しさん (ワッチョイ c252-Mczu)2018/09/24(月) 16:12:04.69ID:6L+7kJR10
>>552
カプセルネットワークの手法だと
各層で獲得した特徴同士の空間的相対位置は正確になるけれど
それでは汎用性がない
脳は空間的相対位置を崩す事もできる

これは記憶している各時間情報を参照して相対位置すら入れ替え可能だからできる
注目した部分の特徴だけを切り取って、別物として貼り付けるのではなく
一定の連続的時間情報部分を切り取って、その部分の特徴を別の連続した時間情報の一部分をキーとして
完全に連結させることができる
だから本当の汎用性を獲得するためには、時間情報の連続的把握が絶対に必要になる

>>553
マルコフ性はこの場合適さない
何故ならば、脳と同様の構造を獲得するためには
過去、現在、未来すべての情報を参照する必要性があるから

558デフォルトの名無しさん (ワッチョイ c68a-tHrl)2018/09/24(月) 16:27:32.53ID:5edCpy4L0
過去・現在・未来の区別は単なる幻想にすぎない アインシュタイン

559デフォルトの名無しさん (エムゾネ FF62-wH+P)2018/09/24(月) 17:28:14.05ID:Kttr1loZF
そうやね

560デフォルトの名無しさん (アウアウエー Sa4a-nL3Z)2018/09/24(月) 18:08:33.46ID:G1aPepRna
>>558
マルコフ連鎖的なレスやな

561デフォルトの名無しさん (アウアウエー Sa4a-Om/S)2018/09/24(月) 18:51:54.57ID:FnEn+Nhsa
>>557
解き方知ってるんじゃないの? 自分で論文を書いた方が早いのでは。

562デフォルトの名無しさん (ワッチョイ c980-yqSl)2018/09/24(月) 19:11:49.55ID:Kxio7RVg0

563デフォルトの名無しさん (ワッチョイ c51d-p43F)2018/09/24(月) 21:11:14.88ID:gWQCW5YD0
隠れマルコフモデルを覚える前にマルコフモデルを覚えましょう。

564デフォルトの名無しさん (ワッチョイ c51d-p43F)2018/09/24(月) 21:12:22.33ID:gWQCW5YD0
ついでに言うとウィナー過程とマルチンゲールも知っとけ

565デフォルトの名無しさん (ワッチョイ c980-yqSl)2018/09/24(月) 21:12:23.12ID:Kxio7RVg0
じゃあ待ち行列の勉強から

566デフォルトの名無しさん (ワッチョイ c68a-tHrl)2018/09/24(月) 21:42:12.44ID:lJZK7+QF0
連休に行楽地へ行って体験しよう

567デフォルトの名無しさん (アウアウエー Sa4a-nL3Z)2018/09/24(月) 22:10:45.88ID:G1aPepRna
>>556
どっちも使った事なさそう

568デフォルトの名無しさん (ワッチョイ 65a5-tCrn)2018/09/24(月) 23:18:47.49ID:OwMqA+EG0
初歩的な質問なんだけど、tensorflowやkeras、pytorchの違いは文法的な作法だけ?
機械学習の本1冊目だけど実践しながら読み終えて完全に理解はしてないけど深層学習も興味あるしやってみたいなと思うんだけど、みんながフレームワーク選ぶ基準教えてほしい

569デフォルトの名無しさん (ワッチョイ f981-XmAP)2018/09/25(火) 00:45:33.33ID:G04XkrxS0
・define and runとdefine by run、まあこの違いはなくなりつつある
・分野によって使われやすいのが違う気がする、arXivみてそんな気がしてるだけで統計とかはないけど

570デフォルトの名無しさん (ワッチョイ c252-Mczu)2018/09/25(火) 01:01:38.10ID:Rmy45yvb0
>>561
論文を書くためには結果が必要だけど
この手法は脳の構造模倣だけに凄まじい量のデータが必要になるのは明白
つまり現実的には、この畳込みモデルを適用したGANも組み込む必要があって
作業量的にも計算量的にも個人ではまず無理

571デフォルトの名無しさん (ワッチョイ 2d8a-9DVt)2018/09/25(火) 03:35:03.53ID:LXnmrKE+0
割込も体験するべき

572デフォルトの名無しさん (アウアウエー Sa4a-Om/S)2018/09/25(火) 04:07:52.14ID:IDRi2Kjza
>>570
仮に他人の論文があっても実現はできないと言ってるように聞こえる。
個人でできる範囲で成果を取った方が有益かもね。

573デフォルトの名無しさん (アウアウウー Sa25-wHMa)2018/09/25(火) 14:23:16.83ID:NL395plNa
回帰における学習でデータ正規化を行った上で得られたモデルを使う場合は学習時の正規化で使った平均・標準偏差を使って入力値を変換しなければいけないと思うんだけど、
scikit-learnの使い方紹介記事とか読むとtrain_test_splitで訓練・テストデータ分離して各々別々にfit_transformで正規化している記事が大半で訓練・テストデータが異なる値で正規化されてしまうことになる
これは訓練・テストデータが大量にあればどうせ平均・標準偏差は変わらないだろうというだけの認識でいいの?

574573 (アウアウウー Sa25-wHMa)2018/09/25(火) 17:49:12.68ID:kAi0n2pKa
ごめん、見た記事では多分最初だけfit_transformして次では単にtransformしてたっぽい
それなら何の問題もないな

575デフォルトの名無しさん (アウアウエー Sa4a-3cGd)2018/09/25(火) 18:05:19.79ID:MY+XQBfWa
>>570
相対性理論とか実証は別の人がやることだってあり得る
論文を出すのはできるんじゃね
それが認められるかどうかは内容次第だし
本当に有益ならリソースを持つ組織が実証するし
必要ならその組織に所属すればいいだけ

576デフォルトの名無しさん (アウアウエー Sa4a-3cGd)2018/09/25(火) 18:09:03.58ID:MY+XQBfWa
>>573
実際に応用として使用する時に上手く行くかどうかじゃね?
学習に使うサンプルが偏ってたらその値を使って正規化すると
実際に使うときに期待する結果にならないんじゃね?

期待する結果に有意差がなければどっちでも良いんじゃないの?

577デフォルトの名無しさん (ササクッテロ Sp71-/e2F)2018/09/25(火) 22:06:17.44ID:niBQlr5vp
最近回帰問題解くのがキツすぎて無理やり0〜1に正規化して分類みたいにやるのがいい気がしてきた

578デフォルトの名無しさん (ワッチョイ 8223-tHrl)2018/09/25(火) 22:39:44.81ID:u+oxJT9H0
>>577
層を厚くすればなんとかなるんじゃないの?

579デフォルトの名無しさん (アウアウエー Sa4a-uN3A)2018/09/26(水) 00:52:49.34ID:OKJKpWkba
そろそろ PyTorch が無視できなくなってきたな つ
https://www.kdnuggets.com/2018/09/deep-learning-framework-power-scores-2018.html

580デフォルトの名無しさん (ブーイモ MM62-MxRe)2018/09/26(水) 08:37:33.11ID:SJU9UbCQM
画像データを分類して教師データを作ろうとしてるんだけど、荒くでいいから自動で分類してくれるソフトないかな。

581デフォルトの名無しさん (ワッチョイ 2d8a-9DVt)2018/09/26(水) 10:44:59.92ID:3yW6iUgn0
SOM

582デフォルトの名無しさん (ササクッテロル Sp71-/e2F)2018/09/26(水) 11:01:18.29ID:UoU/Uwygp
>>578
わからないです
画像の生成モデルで出てきた問題みたいに支配的な領域に適合して細かい構造を予測できないので、分類にしてダイス係数を使おうかと考えていました

583デフォルトの名無しさん (アウアウウー Sa25-wHMa)2018/09/26(水) 12:18:49.20ID:5WxjrnKia
>>580
自動分類できないから機械学習使おうとしてるのにその前に自動分類してくれとは

584デフォルトの名無しさん (ブーイモ MM62-MxRe)2018/09/26(水) 13:07:40.99ID:SJU9UbCQM
>>583
最終的には自分で見なきゃいけないのは承知してるんだけど、荒く自動分類した後に人が修正って考えてます。

何とか教師データの作成を楽したい。

585デフォルトの名無しさん (ブーイモ MM62-MxRe)2018/09/26(水) 13:09:08.33ID:SJU9UbCQM
>>581
ちょっと調べてみます。

586デフォルトの名無しさん (ブーイモ MMb6-MiFZ)2018/09/26(水) 14:20:02.13ID:iQ/1ta8NM
>>584
qtクラスタリングとかどうよ?

587デフォルトの名無しさん (ワッチョイ 8223-coYL)2018/09/26(水) 14:48:10.49ID:nIEdWeYp0
画像にキャプション付けてくれるサービス探したらありそうだけど

588デフォルトの名無しさん (ワッチョイ 8667-SLjp)2018/09/26(水) 17:42:13.90ID:/NSmYwyE0
googleが人間にゴリラってタグ付けてたの思い出した

589デフォルトの名無しさん (ブーイモ MMed-7r02)2018/09/26(水) 18:41:51.88ID:IVfMWxLtM
>>588
当欠だな

590589 (ブーイモ MMed-7r02)2018/09/26(水) 18:42:16.88ID:IVfMWxLtM
s/当欠/凍結/

591デフォルトの名無しさん (ワッチョイ c923-Czqz)2018/09/26(水) 23:13:11.78ID:Lv/+nPmY0
あの画像なら人間でも間違えるから仕方ない

592デフォルトの名無しさん (ワッチョイ 65a5-tCrn)2018/09/26(水) 23:34:16.52ID:KPLU+0tA0
SVCのモデルを作る時にMinMaxscalerでスケール変換して、GridSearchCVでインスタンス作って、それに対してスケール変換した訓練データを使って学習させるって事をやったんだけど、これはダメらしいんだけど前処理の前に交差検証しろっていうのがよく分からない。

交差検証の過程では分割されたデータの一部が訓練用、残りがテスト用になって、訓練用となった部分を用いてモデルを学習させて、テスト用はモデルに対しての評価に使われる。
ここまでは大体分かる

しかし実はスケール変換する際にテスト用となった部分に含まれてる情報を使ってしまってる。
このようなデータはモデルに対してまったく新しいデータとは本質的に異なる。
???訓練用の一部がテスト用になるから??

593デフォルトの名無しさん (ワッチョイ 9fe7-sLUx)2018/09/27(木) 09:27:07.99ID:sw1sA5ZZ0
>>592
スケール変換の際にテストデータの情報を使ってしまったら、そのテストデータは「まったく新しいデータ」とは言えない。

594デフォルトの名無しさん (ワッチョイ 971e-ZVm4)2018/09/27(木) 11:10:18.48ID:TDX1lgSt0
qiitaは機械学習の良い記事があっても全然ランキング入らなくなったな
ニワカが飽きたのか

595デフォルトの名無しさん (ブーイモ MMbf-wjEJ)2018/09/27(木) 11:20:21.49ID:je3kizhWM
>>568
pythonはプログラム言語でtensorflowやkerasは効率よく機械学習するためのライブラリ。

596デフォルトの名無しさん (アウアウウー Sadb-VGrh)2018/09/27(木) 12:14:59.19ID:PZBFougTa
>>594
それならいい記事見つけたらここにでもURL貼ってほしい
qiitaはタイムラインから良記事探すのが難しい

597デフォルトの名無しさん (アウアウエー Sadf-QmoO)2018/09/27(木) 22:08:27.94ID:wuMHpvCna
>>594
飽きたというよりも具体的な恩恵が得られないからモチベーションが続かないのでしょう
趣味でやっている人たちばかりじゃないから

598デフォルトの名無しさん (ワッチョイ 5723-qD32)2018/09/27(木) 22:17:45.69ID:JFP1gXlP0
英語で検索した方が有用な情報多いよ

599デフォルトの名無しさん (ワッチョイ 971e-ZVm4)2018/09/28(金) 00:38:02.48ID:ofrlpy9E0
いいね!稼ぎじゃはてな民くらいしか喜ばないしねぇ

600デフォルトの名無しさん (ワッチョイ 57c3-LqEF)2018/09/28(金) 03:48:20.58ID:tygoHNB90
確かにQiitaは最近いいね減ったな

601デフォルトの名無しさん (ワッチョイ ff81-wjEJ)2018/09/28(金) 05:57:58.09ID:f7OuEx/00
aidemyとpyqどっちで勉強したらいいですか?

602デフォルトの名無しさん (ブーイモ MM7b-4Fho)2018/09/28(金) 08:06:29.54ID:tNPqQxrGM
>>601
どっちもやる。
アイデミーから始めなよ。わかりやすいから。

603デフォルトの名無しさん (ワッチョイ 17eb-G60S)2018/09/28(金) 11:08:53.98ID:Y0/Lv67w0
QiitaとHatenaは、インストール大先生の記事が多すぎて困るから検索結果から外してるわ

604デフォルトの名無しさん (アウアウウー Sadb-VGrh)2018/09/28(金) 13:48:47.12ID:2IAcjEkAa
交差検証について検索してみるとその説明として、ある1つのモデルを考えた場合に、
元データをN分割してその内(N-1)個で学習して、残り1個でテストするのをNパターン繰り返すようなものと理解した。
しかし、CourseraのWeek6で説明してる交差検証は複数のモデルを思いついた場合の最良モデルを選択する手段と説明されており、
データをA,B,Cに3分割して、各モデルをAで学習、Bで評価して比較(このBをcross validation setと呼んでいる)、Bの評価で決定された最良モデルをCで最終評価するという内容になっている。
両者は別物のような気がするんだけど自分が理解しきれていないだけなのか?

605デフォルトの名無しさん (ワッチョイ 9f52-aQox)2018/09/28(金) 13:54:00.86ID:gzs2bud+0
>>601
俺ならaidemyの無料部分だけ流し見してからPyQやる

606デフォルトの名無しさん (アウアウエー Sadf-QmoO)2018/09/28(金) 13:56:04.74ID:SiTAO34aa
SQuAD とかやってる人いる? 流行りの先端モデルとかご存知なら教えてください

>>604
どっちも間違ってない。前者は本来の定義。後者は実践的。

607デフォルトの名無しさん (ワッチョイ 971e-ZVm4)2018/09/29(土) 02:24:39.57ID:yQMwJEzv0
キーエンスなんかは見込み客の連絡先を得るためにホワイトペーパー量産してるんだけどね

608デフォルトの名無しさん (ワッチョイ 778a-S4i9)2018/09/29(土) 08:04:19.54ID:wDXsR2010
キーエンスw

609デフォルトの名無しさん (ワッチョイ 971e-ZVm4)2018/09/29(土) 08:26:36.08ID:yQMwJEzv0
あそこ営業に投資全振りだぞ

610デフォルトの名無しさん (ワッチョイ bf67-BiXC)2018/09/29(土) 08:28:19.01ID:70xW0TAb0
誤爆?

611デフォルトの名無しさん (ワッチョイ 971e-ZVm4)2018/09/29(土) 14:07:15.40ID:yQMwJEzv0
qiitaのいいね稼ぎじゃ具体的な恩恵にならんから続かないって話

612デフォルトの名無しさん (アウアウウー Sadb-VGrh)2018/09/29(土) 15:00:04.38ID:puJ5IR70a
キーエンスのホワイトペーパーは捨てアド偽名でダウンロードしてるわ

613デフォルトの名無しさん (スッップ Sdbf-yIO0)2018/09/29(土) 15:24:38.05ID:7SQdA+7Xd
tf 1.11 出たな、更新かけたわ。2.0 はまだなのか

>>611
それな。勤め先の意向で、個人名でひたすらいいね集めたけど、ひと〜つも仕事に結び付かなかったw
むしろ教えてちゃんからのメールが山ほどきて仕事にならなくなったんで撤退したわ

>>606
一時期やってたけど、もう少し具体的に。どういうアプローチかわからんとアドバイスしにくい。

614デフォルトの名無しさん (ワッチョイ 179f-G9Ql)2018/09/29(土) 17:38:55.50ID:ynHzs1ix0
機械学習のコンペばかりやっているが
いったい実務ではどのぐらいの精度ならOKにするのかとふと思った

615デフォルトの名無しさん (ワッチョイ 9f23-S4i9)2018/09/29(土) 20:16:28.30ID:e3HXgOr80
>>614
kaggleでメダル取れた?

616デフォルトの名無しさん (アウアウエー Sadf-QmoO)2018/09/29(土) 21:12:49.04ID:a1dybsKxa
>>613
どもです。普通に DR とか使ってますがスコアが全然伸びません。

>>614
一般論としては仕事でやるならコストパフォーマンスが一番大事。

617デフォルトの名無しさん (ワッチョイ 971e-ZVm4)2018/09/30(日) 03:30:54.29ID:vyqR8BGx0
仕事では客が要求精度決めるから
それぞれだよ

618デフォルトの名無しさん (ワッチョイ 57c3-e6iu)2018/09/30(日) 04:27:12.57ID:vzbl47da0
協調フィルタリングって任意の精度に調整する事って出来るのかな
例えば,精度が高すぎると新しい商品に巡り会えないから,適度に偶奇性を取り入れたりすること
またそのレベルを調整できるモデルって可能?

619デフォルトの名無しさん (スッップ Sdbf-yIO0)2018/09/30(日) 05:52:32.17ID:qu8/Df54d
>>617
コスト度外視できんだろ、バカだな、なのか

620デフォルトの名無しさん (スッップ Sdbf-yIO0)2018/09/30(日) 05:53:02.84ID:qu8/Df54d
>>616
2はそれじゃ無理

621デフォルトの名無しさん (ワッチョイ 971e-ZVm4)2018/09/30(日) 05:55:15.11ID:vyqR8BGx0
>>619
できる見込み立たなかったら出来ないって言うよ

622デフォルトの名無しさん (スッップ Sdbf-yIO0)2018/09/30(日) 06:00:07.93ID:qu8/Df54d
>>621
そういうことじゃないよ、金の話しだよ。精度上げるのに必要な金を気前良く払う客なんて滅多にいない。

623デフォルトの名無しさん (アウアウエー Sadf-QmoO)2018/09/30(日) 06:23:01.63ID:/+1iIgD2a
予算枠は先に決まってるからね。逆に決まってない場合はまずアポーンw

>>617
一般論として、とわざわざ書いたじゃんw

>>620
なるほど… そういうことですか、別のモデルを調べてみます。

624デフォルトの名無しさん (アウアウウー Sadb-VGrh)2018/09/30(日) 09:48:36.88ID:ec4AtTFMa
コスパって比率だからな
いくら比率良くてもパフォーマンスの絶対値が小さければ意味ないぞ

625デフォルトの名無しさん (ワッチョイ 7708-LSDD)2018/10/01(月) 18:25:21.59ID:LX/fpUaV0
人工知能の本買ってきた
これで二冊目
迷ったけど
ディープラーニングとPython,Tensorflowの本にした
それにしても人工知能の本たくさんあった
5種類ぐらい
最初に買った「ゼロからはじめる〜」の本は10万部いったって
【統計分析】機械学習・データマイニング20 	YouTube動画>2本 ->画像>16枚

626デフォルトの名無しさん (アウウィフ FFdb-+W5L)2018/10/02(火) 10:08:44.43ID:+xKncks4F
本屋の棚は賑わってるが粗製乱造

627デフォルトの名無しさん (ワッチョイ 9fda-aQox)2018/10/02(火) 14:00:24.78ID:2AKCrptK0
ネットに同等以上の記事はいくらでもあるけど
情報まとまってるし、時間ない初学者が買うのはあり
でも電子版じゃないとjupyterやcolabで手動かしながらやるのだるいから
実本はあまり勧めないな

つってもどんどん技術が陳腐化してくから、MLの基本とCNN,RNN,LSTM,GAN,Attentionの概要だけ身につけたら
あとはdeepmindのサイトと論文全部読んで
arxivでsota達成したのだけ数カ月分読むほうがトレンドを追いかけるには手っ取り早い

実装がメインなら論文追わずにKerasやっとけ
すごいのでたらそのうちKerasにも実装されるから
それ使えってのが俺の結論

628デフォルトの名無しさん (アウアウエー Sadf-QmoO)2018/10/02(火) 14:42:01.10ID:NniAR04ea
NLP やるなら PyTorch がもう主流だけどな

629デフォルトの名無しさん (ワッチョイ 572d-tkFK)2018/10/02(火) 15:23:49.58ID:vWOGvfhl0
みなさん、やっぱり、ハイスペックのゲーミングマシンで開発しているの?

630デフォルトの名無しさん (エムゾネ FFbf-+W5L)2018/10/02(火) 15:43:52.26ID:yDKwoLm6F
うむ

631デフォルトの名無しさん (ワッチョイ bf8a-S4i9)2018/10/02(火) 17:16:03.25ID:87pQjPQD0
むう

632デフォルトの名無しさん (アウアウウー Sadb-VGrh)2018/10/02(火) 17:56:36.01ID:0PhHaGOIa
クラウドでやるのと実機用意するのとどっちが安いか

633デフォルトの名無しさん (ワッチョイ 5723-qD32)2018/10/02(火) 18:13:26.05ID:cO79peqD0
データ量次第としか

634デフォルトの名無しさん (ワッチョイ 9fda-aQox)2018/10/02(火) 18:41:23.89ID:2AKCrptK0
研究や学習用途ならもうcolabでいいんじゃねーの
TPUまで無料で使えるようになったから最強すぎるわ
ただ12時間超える学習なんかの場合は、途中で保存する処理を作るか
既にある処理を使う必要性がある、Kerasには既にある
tensorflowの低レベルでやる場合は自分で書く必要性あるのかな
Pytorchはまだ触り程度で詳しくないけど、kerasと同じようなライブラリあるならそれ使えばいい

業務やサービスの場合はどうせAWSかGCP,Azure借りるだろ

635デフォルトの名無しさん (ワッチョイ 9f23-S4i9)2018/10/02(火) 19:43:42.88ID:+CsxoQN10
学習中に不明な原因で接続が切れてた時の絶望感

636デフォルトの名無しさん (アウアウウー Sadb-VGrh)2018/10/02(火) 20:06:47.65ID:Fw3dw3lVa
sotaという言葉を知らなかったので調べてみてstate of the artの略で直訳すると最先端とかそんな意味だから何となく言いたいことは分かったけど機械学習分野での定義に当たるものが全然見つからない
sota達成とか誰がどうやって決めてるの?

637デフォルトの名無しさん (ワッチョイ 9fda-aQox)2018/10/02(火) 22:59:32.38ID:2AKCrptK0
>>636
sotaって論文で書いてる連中は
arxivなどのオープンアクセスな論文サイトに投稿されてるコンピューターサイエンスの論文で有用なのはほとんど全部読んでる
だからどれが最高水準かを知ってるから
その分野におけるsota近辺のモデルの論文の結果と比較してsota達成としている
っていうのが俺の認識
論文完璧に追ってる以外にもカンファレンスで情報収集してるってのもあるだろうけど

物理学なんかと違って、ML分野はオープンアクセスな論壇で発展してきたからこうなってるんだろうけど
その辺の事情を追えてない日本人には全くわからん状態なのも仕方ない

638デフォルトの名無しさん (ワッチョイ 9fda-aQox)2018/10/03(水) 00:45:53.65ID:+7Euz2g60
あぁカンファで同時にsota報告が上がってたんだな
そりゃカンファで採択されるかされないかと
オープンアクセスサイトでの論文公開タイミングは、ものによってはちげーから
いくら先端追ってる連中でも被るのは仕方ない

・GAN的な双方向マルチ学習(自然言語で言うなら敵対的逆翻訳のしあいっこ?)
・特徴に時間間隔とポジション付与
・Attentionの構造改善

この3つが大体の今のトレンドだろ
全部組み合わせたのも半年以内に出てくるだろうけど
結局の所、事象における連続した時間情報の把握と
その状態における時間変化率の学習が上手く出来てないから汎用AIにはなれんだろう

ちゃんとした学者にも俺と似たような事言ってる人いて
脳構造の模倣による時間情報の学習を、哲学的な部分からやろうって言ってる人いるけどどうなるかな

639デフォルトの名無しさん (スッップ Sdbf-EJHQ)2018/10/03(水) 01:19:02.14ID:jfGK+xYpd
脳構造だからうまくいくわけではない。

640デフォルトの名無しさん (ワッチョイ 9f65-i+ik)2018/10/03(水) 01:29:53.26ID:dkrkSoVO0
神経構造なんかは既に解明されてるけど
そうなるとしか分かっていない回路形成の発生学とか
関与しているらしいけど何してるのかいまいち分かっていないグリア細胞とか
こっちの方がモデリングをする上で重要だと思うけどね
今のMLでは生物の機能の一部を模擬してるだけに過ぎない

641デフォルトの名無しさん (ワッチョイ 37a5-VkMC)2018/10/03(水) 05:14:23.46ID:qbq9gQbU0
脳の機能(笑)哲学(笑)

642デフォルトの名無しさん (ワッチョイ 971e-ZVm4)2018/10/03(水) 07:10:02.33ID:1cI2REY30
哲学の成功は論理学と実証主義で完成したと思うよ

643デフォルトの名無しさん (スッップ Sdbf-EJHQ)2018/10/03(水) 12:26:33.96ID:+58IDnbyd
脳モデルはあくまでNN、DL起案者が何をモデルとして数学モデル化したかであり、NN、DLは脳モデルそのものではない。
また、そもそも脳モデルが最適なモデルかどうかはまだ証明が存在しない。

たまたまDLがよい結果出たからそう言われてるだけ。

脳モデルが最適かどうかという前提を何も示さずに、研究者のなかに、『脳の伝達には〜があるから○○を追加したらこうなるはず』みたいな議論されているのを見ると、滑稽に思う。

644デフォルトの名無しさん (ワッチョイ 57c3-aemA)2018/10/03(水) 12:28:55.71ID:sAnPmpeI0
なぜ最適を求める?

645デフォルトの名無しさん (スッップ Sdbf-EJHQ)2018/10/03(水) 12:30:34.07ID:+58IDnbyd
よりよい結果が出たらそっちを採用するだけ。
それが脳モデルになるとは限らない

646デフォルトの名無しさん (ワッチョイ 9f23-aemA)2018/10/03(水) 12:31:35.36ID:in1HBOwn0
>>643
ほんこれなんだよね

Andrew NgもDLを脳に結びつけて説明するのは、誤解が多いから止めたって言ってたわ

647デフォルトの名無しさん (スッップ Sdbf-EJHQ)2018/10/03(水) 12:32:37.09ID:+58IDnbyd
世にこれだけディープラーニングが広まったのは、脳モデルの説明による功績が大きいけどな

648デフォルトの名無しさん (アウアウウー Sadb-VGrh)2018/10/03(水) 12:35:57.50ID:d+kLgL6ia
人間の脳が超省エネで高速に学習して予測結果の出力できているのと比較すると現行モデルは脳と呼ぶにはには程遠いんだけど非理系メディアでは人間の脳を模倣しているなどと喧伝される

649デフォルトの名無しさん (スッップ Sdbf-EJHQ)2018/10/03(水) 12:37:46.63ID:+58IDnbyd
世に広めるにはイメージが大事です。
ただ研究者はイメージで研究してはダメです。

650デフォルトの名無しさん (ワッチョイ 9fda-aQox)2018/10/03(水) 13:20:41.80ID:+7Euz2g60
CSなんて結局は計算能力との兼ね合いだからな
仮に完全に脳構造を模倣したモデルを組み上げたとしても
それがクソ重くて現行の計算資源で回らなけりゃクソだとしか評価されん
かといって脳構造の模倣や考察を放棄するのは適切じゃない
世界モデルもこっちよりだし、強化学習をやるためには避けられないだろう

問題はRNN,LSTMでは事象における連続した時間情報をあまり学習できてないってことだな
TransformerとUTは時間間隔をと位置情報を特徴に埋め込む事で
マルチヘッドセルフattentionにそれらを処理させているが
おそらくは完璧を求めると
階層的にAttentionによる時間情報とポジション付与をしつつ、それらを考慮したCNNで畳み込み
なおかつそれらすべての層を参照しながら、動的に再帰的処理する必要性がある
これにGAN的な世界モデルによる強化学習手法を取り入れれば汎用AIができるだろう
計算力はどうせなんとかなるだろうし
誰かが気づけば、あと10数年で汎用AI完成するんじゃね

651デフォルトの名無しさん (ワッチョイ 9fda-aQox)2018/10/03(水) 13:29:51.05ID:+7Euz2g60
そもそも脳構造の哲学的推測における模倣はイメージじゃなくて
ただの論理的思考なんだけど
推測の過程において論理が飛躍しすぎてると
大抵の人は妄想だと判断して、考察を放棄する傾向があるからしょうがないわな
それが当たり前だもの

652デフォルトの名無しさん (アウウィフ FFdb-+W5L)2018/10/03(水) 13:44:52.38ID:oOvr2XyQF
>>646 >>643
小脳とかをラッピングする形で大脳とかがあるように
NN を別の何かでラッピングするようなモデルがあっても
まだ全く脳のモデルですらない

653デフォルトの名無しさん (ワッチョイ 9f23-aemA)2018/10/03(水) 14:55:39.60ID:in1HBOwn0
遺伝的アルゴリズムも名前が強そうだけど、中身はびっくりするレベルでしょぼいよね

654デフォルトの名無しさん (アウアウウー Sadb-VGrh)2018/10/03(水) 15:06:45.43ID:6o3Z2FT6a
ニューラルネットワークなんて回帰を多層にしただけの超単純構造

655デフォルトの名無しさん (ワッチョイ 178a-S4i9)2018/10/03(水) 15:13:09.66ID:sMpk7EKP0
>>653
はったり、生物の進化淘汰なんかどこにもない

656デフォルトの名無しさん (スッップ Sdbf-EJHQ)2018/10/03(水) 17:49:41.29ID:+58IDnbyd
大事なことなので復唱します。

世に広めるにはイメージが大事です。
ただ研究者はイメージで研究してはダメです。

研究者の中には、脳モデルが最適かどうかという前提を何も示さずに、
『脳の伝達には〜があるから○○を追加したらこうなるはず』
みたいな議論されている方々がおりますが、根拠が薄く滑稽に思います。

657デフォルトの名無しさん (ワッチョイ 17d2-ZVm4)2018/10/03(水) 17:57:56.16ID:Oh5w9UQA0
>>653
AI関連の話題は、タイトルは大げさなんだけど内容はショボいよね。
俺は頑張りますよ!

658デフォルトの名無しさん (アウアウウー Sadb-VGrh)2018/10/03(水) 18:01:02.58ID:3Ieh8Fw3a
最適かどうかは完成物があれば評価できるんだからいいでしょ
そもそも分からないから研究して新しいモデルを作るわけで
最初から何が最適か知っている人がいてそれを論理的に説明できるのならばとっくにそれがスタンダードになっているはずだがそうはなっていないんだから最適など誰も知らないと考えるのが自然

659デフォルトの名無しさん (スッップ Sdbf-EJHQ)2018/10/03(水) 18:05:20.45ID:+58IDnbyd
つまりはまあ、最近の機械学習の論文なんて実績と経験則の積み上げ(帰納)によるものがほとんど。
より良きモデルからスタートしたモデルのアイデア(演繹)を求む

660デフォルトの名無しさん (スッップ Sdbf-EJHQ)2018/10/03(水) 18:10:02.59ID:+58IDnbyd
アイデアと結果はあるのだかどうやって世に広めたらよい?

661デフォルトの名無しさん (ワッチョイ 9fda-aQox)2018/10/03(水) 19:13:50.43ID:+7Euz2g60
結果あるなら論文書いてarxivに投稿すりゃいいじゃん
高校生ですらMLの論文書いて投稿してたの昨年話題になったろ

662デフォルトの名無しさん (スッップ Sdbf-EJHQ)2018/10/03(水) 19:49:21.65ID:+58IDnbyd
とんくす

663デフォルトの名無しさん (ワッチョイ 778a-S4i9)2018/10/03(水) 20:20:45.13ID:/V77wCG20
くず

664デフォルトの名無しさん (アウアウエー Sadf-jt0n)2018/10/03(水) 20:46:41.49ID:YGFwuNMda
>>654
単純構造で目的を達成できるならそれでいいんじゃないの?
必要以上に複雑にして何かメリットあるの?

665デフォルトの名無しさん (アウアウエー Sadf-jt0n)2018/10/03(水) 20:48:04.20ID:YGFwuNMda
>>656
既に実現されてるものを真似するのは方法の一つじゃない?
バイオミメティクスとか

666デフォルトの名無しさん (アウアウエー Sadf-jt0n)2018/10/03(水) 20:49:11.35ID:YGFwuNMda
>>656
最適かどうかは評価尺度によるところもある
経済的になのか学習コスト的になのか結果の精度的になのかとか

667デフォルトの名無しさん (アウアウエー Sadf-jt0n)2018/10/03(水) 20:50:21.87ID:YGFwuNMda
>>659
結果が全てじゃね?
モデルを頭で考えても実証しなければ役に立たない
数学とは違うんじゃね?

668デフォルトの名無しさん (アウアウエー Sadf-jt0n)2018/10/03(水) 20:52:26.70ID:YGFwuNMda
>>660
それが何の役に立つのかとか
どんな課題を解決できるのかとか
あとは面白いかどうかとか
ARの技術もスノーとかに応用することで一般の人は知らずに広まっている

669デフォルトの名無しさん (ワッチョイ bf8a-EJHQ)2018/10/03(水) 21:20:45.12ID:nJKVxi/i0
>>665-668
だからそれは問題に対する帰納的なアプローチだってば。
マイナーチェンジでしかパワーアップ出来ない。

670デフォルトの名無しさん (ワッチョイ bf8a-EJHQ)2018/10/03(水) 21:23:50.17ID:nJKVxi/i0
また一概には言えないかもしれないが、結果がローカルなものになりがち

671デフォルトの名無しさん (ワッチョイ 9fda-aQox)2018/10/03(水) 21:59:40.34ID:+7Euz2g60
そもそも、ある程度iter重ねるか、少数サンプルで訓練した結果をプロットしつつ
新しいモデルを模索してくのが、今のMLにおける超大多数の手法であって
最初から論理的組み立て部分で有効性を実証してから研究始めるなんて手法は
明らかにメジャーではない

取り敢えず予測モデルで雑なコーディングして、訓練結果をプロットしてみてから
数理モデルの有効性に論理的説明をつけるって手法がメインなのは
有用な結果を残してる論文の内容からも分かる話

ほとんどだーれも論理的説明を完璧に付けてから研究開始なんざしてない
+58IDnbydの論理展開を適用すると、全員滑稽になっちまわないか?
そういう意味で、既に有効性の確認されている脳っていうクソ速いモデルを模倣するっていうのは
その時点である程度の論理的根拠を示しているとすら言える

672デフォルトの名無しさん (ワッチョイ bf8a-EJHQ)2018/10/03(水) 22:50:21.46ID:nJKVxi/i0
>>671
別にメジャーじゃなくてよい

673デフォルトの名無しさん (スッップ Sdbf-yIO0)2018/10/03(水) 23:45:59.60ID:23QaCALXd
pytorchのdevcon見たけど、想像以上に大企業がサポートしてて驚いたわ

674デフォルトの名無しさん (アウアウエー Sa6a-yUUL)2018/10/04(木) 02:41:08.39ID:pZO9AOgra
見てみたけど、グローバルなAI 企業オールスターって感じか。
もっとも作ってるのが FBだから別に不思議でもないけど

675デフォルトの名無しさん (アウアウエー Sa6a-VI3z)2018/10/04(木) 08:08:02.24ID:WxW/ujNfa
>>669
帰納的なアプローチがなぜダメだと判断でしているのか判らない
帰納的に発見した原理を演繹的に適用すれば良いだけじゃね?

676デフォルトの名無しさん (アウアウエー Sa6a-VI3z)2018/10/04(木) 08:09:50.53ID:WxW/ujNfa
>>671
帰納的に探索する領域の問題でしかないだろ

演繹的に適用する原理に相当するものはどこから発見するのか

677デフォルトの名無しさん (ワッチョイ ba23-vBoO)2018/10/04(木) 09:59:48.56ID:s8ye5l4L0
>>674
chainerは消えゆく運命だな

678デフォルトの名無しさん (アウアウエー Sa6a-TFgJ)2018/10/04(木) 10:14:52.99ID:AR+RrRuFa
好きなんだがなあchainer

679デフォルトの名無しさん (シャチーク 0Cde-XM+q)2018/10/04(木) 12:34:16.99ID:zfP46g3nC
Google Colaboratoryで
!apt -y install libcusparse8.0 libnvrtc8.0 libnvtoolsext1
ができなくなったのだがどうしたらいいのか

680デフォルトの名無しさん (JP 0H9a-2jv+)2018/10/04(木) 16:03:33.77ID:ux982JKKH
演繹厨うぜえ

681デフォルトの名無しさん (ペラペラ SD5a-DeRO)2018/10/04(木) 16:06:35.89ID:U2kQDcc/D
>>677-678
tensorflow vs pytorch の構図が完全できちゃったんで他のフレームワークはどれも厳しいけど、
tf の独占を阻止できたのは良かったと思う。 tf が pytorch を滅茶意識してて笑えるw

682デフォルトの名無しさん (ワッチョイ f41e-Qng4)2018/10/04(木) 21:40:33.09ID:OD7dB/YO0
vs?

683デフォルトの名無しさん (フリッテル MM5e-DXVT)2018/10/04(木) 22:39:26.90ID:ktsy0FKAM
visual studio

684デフォルトの名無しさん (スッップ Sd70-qFZH)2018/10/04(木) 22:49:09.65ID:Y2bv5t2ed
>>678
良くも悪くも学生の趣味の域をこえてないのが残念。こえる気もないのかもしれんが

685デフォルトの名無しさん (スッップ Sd70-qFZH)2018/10/04(木) 23:03:51.17ID:Y2bv5t2ed
>>681
2.0 はもろにそうだな

686デフォルトの名無しさん (ワッチョイ 01b3-hMf/)2018/10/05(金) 08:18:57.73ID:cSK7i/nT0
NVIDIA RTX 2080 Ti vs 2080 vs 1080 Ti vs Titan V, TensorFlow Performance with CUDA 10.0

https://www.pugetsystems.com/labs/hpc/NVIDIA-RTX-2080-Ti-vs-2080-vs-1080-Ti-vs-Titan-V-TensorFlow-Performance-with-CUDA-10-0-1247/

1080Tiと2080Ti比べるとFP32は1.35倍くらいでゲームのベンチ(レイトレコア・テンサーコア使わない場合)と同じ傾向でガッカリ
FP16ならさすがに速いね
【統計分析】機械学習・データマイニング20 	YouTube動画>2本 ->画像>16枚
【統計分析】機械学習・データマイニング20 	YouTube動画>2本 ->画像>16枚

687デフォルトの名無しさん (アウアウエー Sa6a-TFgJ)2018/10/05(金) 10:48:01.81ID:kmGDPqXya
>>684
マルチGPUの分散学習はChainerが速いらしいから頑張ってほしい

688デフォルトの名無しさん (スフッ Sd70-rfKm)2018/10/05(金) 10:49:42.25ID:df1WW8w8d
頑張ります

689デフォルトの名無しさん (ワッチョイ f18a-Qng4)2018/10/05(金) 14:37:40.34ID:gTNPCIlY0
えいえいおー!

690デフォルトの名無しさん (アウアウエー Sa6a-DeRO)2018/10/06(土) 11:03:04.25ID:BbA86mG7a
>>687
TPUも作れるといいね(棒)

691デフォルトの名無しさん (ワッチョイ d42c-3sDw)2018/10/06(土) 11:16:45.87ID:KmIbUzui0
NHK教育を見て56088倍賢く三連休
http://2chb.net/r/liveetv/1538780245/

692デフォルトの名無しさん (アウアウエー Sa6a-DeRO)2018/10/06(土) 11:26:12.82ID:BbA86mG7a
>>686
もう CUDA 10.0 かよ…

693デフォルトの名無しさん (ササクッテロレ Sp10-DPST)2018/10/06(土) 15:40:12.76ID:638PEvttp
会社の技術発表で機械学習をやってみたいんだけど、
例えば、複数ユーザーのツイートを元に学習したアカウントで人間っぽく自動ツイートする、みたいなことって可能ですかね?
使用したことある言語はjavaくらいで、Pythonとかは始めてなんですけど

694デフォルトの名無しさん (ワッチョイ 5123-HYg0)2018/10/06(土) 15:55:25.36ID:XsiX8sgh0
可能

695デフォルトの名無しさん (ササクッテロレ Sp10-DPST)2018/10/06(土) 16:33:50.86ID:638PEvttp
>>694
よっしゃ、ありがとうございます
1ヶ月あればなんとかなるかな、頑張ってみます

696デフォルトの名無しさん (アウアウエー Sa6a-VI3z)2018/10/06(土) 20:05:00.50ID:higGMxdEa
>>695
ところで業務にはどう役に立つのかね?
って言われそう

697デフォルトの名無しさん (ワッチョイ 6667-pE0U)2018/10/06(土) 20:07:01.15ID:ID0TniNM0
日立なんかは一年目に技術発表会やると聞いた。上の人がどこの人か知らんけど

698デフォルトの名無しさん (ササクッテロレ Sp10-DPST)2018/10/06(土) 20:27:28.89ID:638PEvttp
>>696
自分が興味あることを発表する、みたいな場だから業務に役立つかどうかは大丈夫
ゲーム作ってきたやつもいたし

699デフォルトの名無しさん (ワッチョイ 4e8a-hckX)2018/10/06(土) 23:01:16.24ID:b45hR0RV0
>>698
著作権的にいいのかな?社内向けとはいえそれをツイートまでするのはアウトな気がする。
自分のアカウントを2つ作ってやるならいいだろうけど。

700デフォルトの名無しさん (スプッッ Sd70-qFZH)2018/10/07(日) 00:40:28.21ID:ZjjgaVC7d
日本の会社はぬるくて羨ましいなw

701デフォルトの名無しさん (アウアウウー Sa83-fb/i)2018/10/07(日) 00:41:29.35ID:frJT0RqLa
Twitterはツイートした時点でその内容を誰がどう使ってもいいよ、っていう規約だったはずだから権利侵害とかの問題はないだろう

702デフォルトの名無しさん (ワッチョイ 1cd2-qZzK)2018/10/07(日) 00:47:51.09ID:ocS+GJlU0
独学で機械学習やってるけど、おっさんの腐った脳味噌じゃもうダメだな
大学入り直すか

703デフォルトの名無しさん (ブーイモ MM5a-HYg0)2018/10/07(日) 00:53:53.77ID:o9Iuox3HM
2chの方が著作権移動が厳しい

704デフォルトの名無しさん (ワッチョイ 6667-pE0U)2018/10/07(日) 01:05:46.09ID:pVH0KbtN0
CS系の大学の講座取ってみたい

705デフォルトの名無しさん (アウアウエー Sa6a-VI3z)2018/10/07(日) 05:08:20.65ID:xO6NYQqFa
>>701
著作権で言えば
著作者人格権とか著作権に関する権利の一部は
日本の法律ではなくならないはず

706デフォルトの名無しさん (ワッチョイ 74dc-XM+q)2018/10/07(日) 08:15:30.42ID:aHxIGRZV0
そもそも、機械学習で生成されたデータが
元にしたデータの著作権侵害になるという法律屋の指摘に違和感を感じる

707デフォルトの名無しさん (アウアウウー Sa83-fb/i)2018/10/07(日) 10:47:04.83ID:uEzOl35Aa
日本は法律面で先進国としては非常に珍しい機械学習パラダイスなんだぞ

進化する機械学習パラダイス 〜改正著作権法が日本のAI開発をさらに加速する〜
https://storialaw.jp/blog/4936

708デフォルトの名無しさん (オッペケ Sr10-TFgJ)2018/10/07(日) 11:49:44.59ID:KWtYBJ31r
個人情報保護とかで医療関連はデータ集めるのが大変だそうな

709デフォルトの名無しさん (アウアウウー Sab5-TgND)2018/10/07(日) 13:26:13.70ID:cOS3eGIea
その辺りは医療機関自体がデータサイエンティスト雇うか業務提携するしかないだろう

710デフォルトの名無しさん (ワッチョイ 6667-pE0U)2018/10/07(日) 14:08:13.17ID:pVH0KbtN0
ワイのレントゲン写真使うなら肖像権高うつきまっせ

711デフォルトの名無しさん (アウアウウー Sab5-TgND)2018/10/07(日) 14:14:45.59ID:cOS3eGIea
>>707
つまりこういうことだな
現在:「学習用データ収集→諸々の処理→学習モデル作成」を個人や自社だけで完結させる場合は商用・非商用問わず著作権者の許可を取る必要なし
2019/1/1以降:収集した学習用データを他人・他社に公開・販売するのも著作権者の許可を取る必要なし
※もちろんデータ解析という本来の目的外に使用されることが明らかなら違法なので、漫画データの学習のためと謳って漫画スキャン画像を公開するとかはNG

ということで、明らかに悪用するような使い方でない限りデータ解析において著作権を気にする必要はない

712デフォルトの名無しさん (ワッチョイ 1e9f-PkCJ)2018/10/07(日) 14:39:39.25ID:oKeY0xEK0
日本の会社はそもそもデータが足りていないらしい
今まで何をやっていたのか

https://www.nikkei.com/article/DGXMZO35932210Q8A930C1MM8000/

713デフォルトの名無しさん (ワッチョイ f18a-Qng4)2018/10/07(日) 14:57:55.33ID:pk8THtng0
著作権先進国(笑)

714デフォルトの名無しさん (ワッチョイ 671e-XM+q)2018/10/07(日) 17:38:31.02ID:QNVjJiYJ0
医療用プログラムは医療用機器つくってた会社しかつくれないように規制されてるから入れん
認可とるのも大金かかるし

715デフォルトの名無しさん (ワッチョイ 0e5d-bfG9)2018/10/07(日) 20:31:31.21ID:JgS2v7in0
GANのdiscriminatorの次元減らしていくのに全結合無い方がいい理由ってなんで?

716デフォルトの名無しさん (ワッチョイ 0e5d-bfG9)2018/10/07(日) 20:35:00.63ID:JgS2v7in0
DCGANの話です

717デフォルトの名無しさん (アウアウエー Sa6a-VI3z)2018/10/07(日) 20:45:05.75ID:RqIyj36Sa
>>708
個人情報を収集するときに
利用目的や利用の範囲とかを示して
合意して貰えばいいだけじゃね?
おと要求に応じて開示修正破棄できるようなシステムにしておく
ほかの個人情報でも同じ

718デフォルトの名無しさん (ワッチョイ d980-A6IM)2018/10/07(日) 21:24:55.65ID:mIq+f5AO0
https://arxiv.org/pdf/1312.4400.pdf
> 3.2 Global Average Pooling

> ・・・
> However, the fully connected layers are prone to overfitting, thus hampering the generalization ability
> of the overall network. Dropout is proposed by Hinton et al. [5] as a regularizer which randomly
> sets half of the activations to the fully connected layers to zero during training. It has improved the
> generalization ability and largely prevents overfitting [4].

> In this paper, we propose another strategy called global average pooling to replace the traditional
> fully connected layers in CNN.

719デフォルトの名無しさん (アウアウカー Sa0a-bfG9)2018/10/07(日) 21:52:22.17ID:7A10mDJxa
>>718
全結合いれたら汎化性が落ちるから他の方法でってことか
ありがとう

720デフォルトの名無しさん (アウウィフ FF3a-HYg0)2018/10/08(月) 11:31:11.61ID:+5qyKWRvF

721デフォルトの名無しさん (ワッチョイ 671e-XM+q)2018/10/08(月) 11:41:22.65ID:99LuQJTy0
なんと!あのアナコンダが!
っていうほどのもんじゃないな

722デフォルトの名無しさん (アウアウエー Sa6a-TFgJ)2018/10/08(月) 11:44:43.55ID:tjiQ7o9Aa
>>717
これから集める分ならそうだろうな
でも今まで蓄積してきたデータは?
契約上使っても問題ないデータが十分集まる頃にはとっくに置いてかれている

723デフォルトの名無しさん (アウアウエー Sa6a-VI3z)2018/10/08(月) 13:07:36.75ID:DvqFh1SLa
>>722
再確認すれば良い
利用規約の改定とか普通によくあることじゃね?

724デフォルトの名無しさん (アウアウエー Sa6a-TFgJ)2018/10/08(月) 14:02:39.08ID:tjiQ7o9Aa
>>723
その再確認を既に退院した人含めて一人一人にするのは結構大変なのでは

725デフォルトの名無しさん (ブーイモ MMed-fU7r)2018/10/08(月) 14:31:20.58ID:4tTMXMXFM
arxivのML・DL論文読んでて、日本人の論文少ないよね

726デフォルトの名無しさん (ワッチョイ 048a-Qng4)2018/10/08(月) 15:01:42.20ID:aB+juQlj0
意味不明な日本語を使う奴に言われてもw

727デフォルトの名無しさん (ワッチョイ 951d-CKq4)2018/10/08(月) 21:08:44.54ID:ND0ntmkA0
英語でわざわざ論文書くのがめんどくさい

728デフォルトの名無しさん (ワッチョイ 3aaf-2Yci)2018/10/08(月) 22:37:44.37ID:6UIbz9ua0
外人嫌いだし

729デフォルトの名無しさん (アウアウエー Sa6a-VI3z)2018/10/09(火) 08:09:06.14ID:CcNKGFP6a
>>724
新たに同等のデータを取るのに比べたら手軽じゃね?
現状の法律でも個人情報の開示や削除要請には応じる必要があるからその準備はできているはず

730デフォルトの名無しさん (ワッチョイ 9e12-2/1q)2018/10/09(火) 23:49:18.73ID:++HOLxfb0
分類するときにA,B,C,その他みたいに分類できるアルゴってないですか?
学習してない似たやつをどや顔で間違えて分類するのでなんとかしたい

731デフォルトの名無しさん (スプッッ Sd9e-qFZH)2018/10/10(水) 00:05:38.82ID:RHyHT8b9d
何回同じ話ししてるんだよw

732デフォルトの名無しさん (アウアウウー Sa83-fb/i)2018/10/10(水) 00:28:20.33ID:egfM8dTJa
one vs allかone vs restで検索
もしこれで分類できないならそもそも使っている特徴量的にA,B,Cとその他が区別できていないのだろうから特徴量の選定からやり直す

733デフォルトの名無しさん (アウアウエー Sa6a-DeRO)2018/10/10(水) 00:36:06.65ID:FD95EKzWa
このネタ同じ人?

734デフォルトの名無しさん (ワッチョイ 528a-CKq4)2018/10/10(水) 22:38:14.62ID:3fNWNg5+0

735デフォルトの名無しさん (ワッチョイ 671e-XM+q)2018/10/10(水) 23:37:18.54ID:CBzJzHEZ0
文系PG抱えてる会社を食い物にしてる商売多すぎぃ

736デフォルトの名無しさん (スププ Sd70-rfKm)2018/10/10(水) 23:58:52.97ID:Z3r4I6WRd
>>735
文系PGを抱えてる会社を食い物にする商売ってどんなの?

737デフォルトの名無しさん (ワッチョイ df0e-4Hut)2018/10/11(木) 00:28:18.10ID:DY6agtqn0
PGに文系もくそもねぇwww

738デフォルトの名無しさん (ワッチョイ 278a-Zu1O)2018/10/11(木) 12:18:02.31ID:vTh9hgF00
土方PGで大儲け(過去形)

739デフォルトの名無しさん (ワッチョイ 7f08-w7rM)2018/10/11(木) 13:19:56.51ID:WWqvoXS50
AI(人工知能)で既存のホワイトカラーの仕事がなくなっていく一方、
孫正義が言うように「AIのエンジニア」の需要は増加する。

そこで画像生成について学習してるんだが、
DCGANは知ってたけどCycleGANというものがあることを知った。
CycleGANはかなり面白そうだったので、

自前で人工知能作ろうと思う。
GTX1080で3時間学習させたCycleGANがあったんだが、
男性のトーク動画を女性に変換しててすごいと思った。

これから購入するパソコンのスペックはGTX1080以上あればいいかな?

740デフォルトの名無しさん (スップ Sd7f-m/yn)2018/10/11(木) 14:28:42.63ID:jOTiaxUqd

741デフォルトの名無しさん (スップ Sd7f-m/yn)2018/10/11(木) 14:31:15.98ID:jOTiaxUqd
アトラクター?
ポアンカレ断面の不動点でも求めてんのかね

742デフォルトの名無しさん (ワッチョイ c78a-Zu1O)2018/10/11(木) 15:17:36.46ID:ZiWr81AM0
孫正義(笑)、Nスペ見るの止めた

743デフォルトの名無しさん (ワッチョイ df23-4Hut)2018/10/11(木) 15:46:57.01ID:jc3fQN7m0
これからの時代、人とのコミュニケーションを鍛えた方が生き残れると思うよ

744デフォルトの名無しさん (ワッチョイ a71e-JlWZ)2018/10/11(木) 16:57:44.01ID:HpbFK8lR0
小学生並みの感想

745デフォルトの名無しさん (ワッチョイ df5d-nqL9)2018/10/11(木) 20:26:53.34ID:CtLR6CRw0
メモリ8GBでやってたら訓練データメモリに載せるだけでPCカックカクでわろた
一応モデルとバッチはGPUのメモリが足りてるからいいけど訓練データ増えたらきついな

746デフォルトの名無しさん (エムゾネ FFff-PH46)2018/10/11(木) 21:10:29.30ID:1ID+fdJTF
tensorflowなら訓練データをtfrecordにして非同期読み込みすることで解決できるけど

747デフォルトの名無しさん (アウアウエー Sa9f-M6rN)2018/10/11(木) 22:57:22.95ID:4qCh5/Foa
もちろんTFRecord にしてもいいけど、
クラウドでやれば最低でも50GB くらいはメモリついてるぞ


lud20181012234244cこのスレへの固定リンク: http://2chb.net/r/tech/1533635797/
ヒント:2chスレのurlに http://xxxx.2chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

TOPへ TOPへ  

このエントリをはてなブックマークに追加現在登録者数177 ブックマークへ


全掲示板一覧 この掲示板へ 人気スレ | 動画:Youtube fc2 Tube8 xvideo pornhost >50 >100 >200 >300 >500 >1000枚 新着画像

 ↓「【統計分析】機械学習・データマイニング20 YouTube動画>2本 ->画像>16枚 」を見た人も見ています:
■中国人の旅行先までも 大阪1位キタ-----(・∀・)-----!  東京はまた敗北wwww 海外ではトンキンメディアの捏造は通じない模 [無断転載禁止]©2ch.net [901679184]->->画像>67枚
【悲報】xvideosに女子小学生とガチセックス動画->動画>4本
エロゲー改変・データ抽出総合スレッド Part26 ©bbspink.com ->->画像>43枚
人工知能ディープラーニング機械学習のための数学 [無断転載禁止]©2ch.net (801)
設計思想/ソフトウェア工学(UML, デザパタetc) [無断転載禁止]©2ch.net (145)
テキストエディタ総合 エディタ戦争 (43)
パスワードのヒント機能は愚かなアイデアなのか? (29)
データ構造,アルゴリズム,デザインパターン総合スレ 3©2ch.net (954)
【機械語/アセンブリ】x86/x64【Intel/AMD】 (7)
コーディング、テスト、デバッグ、エディタ技術総合 [無断転載禁止]©2ch.net (62)
学習・改善コスト VS 惰性コスト (2)
配列、線形代数、写像、ベクトル、幾何学コーディング [無断転載禁止]©2ch.net (26)
圧縮・復元 相談室 (917)
学術的に優れた開発をしている会社ありませんか? [無断転載禁止]©2ch.net (9)
デーモンとサーバソフトって別物ですか? (8)
pythonで実験データの分析、計算をしたいのだが [転載禁止]©2ch.net (30)
機械語なら俺に質問しろ!その2 (252)
ベイズ推定(機械学習含む) (12)
巨大なアーキテクチャ内での基本的なデータ構造 [無断転載禁止]©2ch.net (28)
宇宙企画のAV->動画>3本->画像>29枚
[中国]海外のゲイサイト[アジア]->動画>10本->画像>704枚
お前らがロリコンになったきっかけって何なの? ->画像>49枚
【童顔】XVIDEOSの炉リテロリスト動画【疑似】27 [無断転載禁止]©bbspink.com ->動画>245本->画像>271枚
森田水絵よ永遠に [無断転載禁止]©bbspink.com ->動画>1本->画像>181枚
【BT】これから落とそうとしてる.torrentを晒スレ2->動画>4本->画像>573枚
皇室、御所、皇居にまつわる不思議って part21->動画>10本->画像>303枚
【吉原】王室/Oushitu 51【高級店】 [無断転載禁止]©bbspink.com ->->画像>7枚
思わずムラッとしたU-15画像 76ムラ目 ->動画>2本->画像>167枚
【画像】ロシアの女子小学生のおパンティがエロすぎると話題にwwwwwwwwwww ©2ch.net [215976626]->動画>8本->画像>25枚
体育会の合宿・寮での思い出を語ろう!【第1回生】 [無断転載禁止]©bbspink.com ->->画像>11枚
北海道の高校☆Part21->動画>14本->画像>2枚
コイカツ! 登校32日目 【Illusion/イリュージョン】 [無断転載禁止]©bbspink.com ->動画>8本->画像>97枚
ハニーセレクト&プレイホーム有名人・芸柏lSSスレ [無断転載禁止]©bbspink.com ->->画像>5枚
yourfilehost これ誰?in半角板 part41->動画>374本->画像>11枚
媚薬・催眠術・魔法等でHにさせられる画像 Part24->動画>4本->画像>132枚
佐藤良子 「よいこのPON!」Part22->動画>2本->画像>320枚
【動画専用】これ誰と聞けば教えてくれるスレ 233 [無断転載禁止]©bbspink.com ->動画>9本->画像>52枚
三国天武 part73 ->->画像>14枚
コイカツ! MODスレ part2【Illusion/イリュージョン】 [無断転載禁止]©bbspink.com ->->画像>4枚
【チンポ】おちんちんが大好きなゲイ42本【チンコ】 ->動画>4本->画像>147枚
自分たちの夫婦生活を報告するスレ56帖目 ©bbspink.com ->動画>2本->画像>24枚
■□■□宮城県高校総合スレッドPart29□■□■ ->動画>2本->画像>4枚
韓デリを語ろう6 [無断転載禁止]©bbspink.com ->->画像>5枚
【AKB48卒業生】中田ちさと応援スレ☆157【ちぃちゃん☆】 ->->画像>14枚
ここ最近のライダーはいくら何でも怪人減らしすぎじゃね? ->->画像>4枚
特オタ、クャuサな自撮りを晒されるpart3 [無断転載禁止]©2ch.net ->動画>12本->画像>168枚
特撮の初歩・基本の質問をしてもいいスレッド 36 [無断転載禁止]©2ch.net ->動画>20本->画像>41枚
なんで特撮オタってあんなにキチガイなの? [無断転載禁止]©2ch.net ->->画像>8枚
仮面ライダー の苗字w ->->画像>5枚
吉原 ラビアンローズ Part 57 [無断転載禁止]©bbspink.com ->->画像>7枚
【吉原】石榴【落とすなよ】 [無断転載禁止]©bbspink.com ->->画像>9枚
【動画専用】これ誰と聞けば教えてくれるスレ 160 [無断転載禁止]©bbspink.com ->動画>346本->画像>65枚
【画像専用】これ誰と聞けば教えてくれるスレ226 [無断転載禁止]©bbspink.com ->->画像>1013枚
【初々しい】女子小中学生の胸の画像 Part.4->動画>7本->画像>539枚
BS11 22420 ->->画像>46枚
【画像専用】これ誰と聞けば教えてくれるスレ227 [無断転載禁止]©bbspink.com ->->画像>993枚
 【女子小中学生の膨らんだ胸の画像 Part.4】 [無断転載禁止]©bbspink.com ->動画>4本->画像>1451枚
【魅惑の唇】膳場貴子 報道特集NEWS48【誘惑の美脚】 [無断転載禁止]©2ch.net ->動画>18本->画像>884枚
【テレビ】 裸情報・総合・その92【雑誌】 ->動画>13本->画像>141枚
写真袋でゆかちゃん流出 ->動画>8本->画像>12枚
[Win10専用] Windows Updateしたらageるスレ35 ->->画像>4枚
ゲイのtwitter☆77©2ch.net->->画像>174枚
大阪の都市計画について語るスレ Part102 ->->画像>6枚
【ゲイ】●オナニー用おかず画像167●【専用】 [無断転載禁止]©bbspink.com ->->画像>9枚
素人女性の水着 フェト☆35フェト ©bbspink.com ->動画>10本->画像>1311枚
【ワッチョイ】韓デリを語ろう7 【導入】 [無断転載禁止]©bbspink.com ->->画像>5枚

人気検索: スク水 nude girl 女子 中学生 小学生盗撮 アウ洋ロリ 陸上 素人 乱交 本日のあうロ U-10女子小学生エロ動画 child porno 二次ブルマ
22:58:23 up 143 days, 7 min, 3 users, load average: 2.37, 2.53, 2.64

in 0.064367055892944 sec @0.064367055892944@129 on 101811